Normalized defining polynomial
\( x^{20} - 2 x^{19} - 3 x^{18} + 33 x^{17} - 130 x^{16} + 437 x^{15} - 1067 x^{14} + 248 x^{13} + 5896 x^{12} - 14188 x^{11} + 21820 x^{10} - 43599 x^{9} - 7699 x^{8} + 97875 x^{7} - 91977 x^{6} + 302319 x^{5} - 49552 x^{4} - 292478 x^{3} - 70145 x^{2} + 111235 x + 28367 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6593371018023678808268905753944157=397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{8}{23} a^{17} + \frac{3}{23} a^{16} - \frac{7}{23} a^{14} - \frac{1}{23} a^{13} - \frac{7}{23} a^{12} - \frac{1}{23} a^{11} + \frac{10}{23} a^{10} - \frac{7}{23} a^{9} + \frac{11}{23} a^{8} - \frac{7}{23} a^{7} - \frac{4}{23} a^{6} + \frac{5}{23} a^{5} + \frac{1}{23} a^{4} - \frac{8}{23} a^{3} - \frac{3}{23} a^{2} - \frac{3}{23}$, $\frac{1}{155325217768357854305654402532972940012188720164912381478811} a^{19} + \frac{2584007076162546046747579488568996739973658774766888755841}{155325217768357854305654402532972940012188720164912381478811} a^{18} + \frac{16693002570422276671659245921710956346476826606235734214353}{155325217768357854305654402532972940012188720164912381478811} a^{17} - \frac{14497137474618752258539937282169030239701707880571779358085}{155325217768357854305654402532972940012188720164912381478811} a^{16} + \frac{41433718180364876802783125125765373696038667385970468078108}{155325217768357854305654402532972940012188720164912381478811} a^{15} - \frac{23304957725525447958753936942853965084321601778103454091950}{155325217768357854305654402532972940012188720164912381478811} a^{14} - \frac{4567739951633065308058892482327043487753752278695538913583}{155325217768357854305654402532972940012188720164912381478811} a^{13} + \frac{48880201717591243840049339983208608665787785977998644468534}{155325217768357854305654402532972940012188720164912381478811} a^{12} + \frac{15218673225892007973294514138696177443428653453810713560862}{155325217768357854305654402532972940012188720164912381478811} a^{11} - \frac{20671950356656033598191276966868560541551450985374539785167}{155325217768357854305654402532972940012188720164912381478811} a^{10} - \frac{73269303604810783992127608215091496113190464891259536776421}{155325217768357854305654402532972940012188720164912381478811} a^{9} + \frac{13595731185911414658907731692899873402735184724404411983540}{155325217768357854305654402532972940012188720164912381478811} a^{8} - \frac{48003062628966100623909846874939781890260961072216151772008}{155325217768357854305654402532972940012188720164912381478811} a^{7} + \frac{67341355844499424284082791723126074022504230521898965678204}{155325217768357854305654402532972940012188720164912381478811} a^{6} + \frac{49270399651744570583812473133862781646597810802793041601612}{155325217768357854305654402532972940012188720164912381478811} a^{5} + \frac{45602327496054920560068960814136679331649513325235127916304}{155325217768357854305654402532972940012188720164912381478811} a^{4} - \frac{14523504059505264082107625347895213262384366136473877561601}{155325217768357854305654402532972940012188720164912381478811} a^{3} + \frac{6207294307138372686264323860571864151962350982771820219518}{155325217768357854305654402532972940012188720164912381478811} a^{2} - \frac{29093221435749386180476500381244892108334931852971512443567}{155325217768357854305654402532972940012188720164912381478811} a - \frac{57127281202105596885081037467562457587707135037538285153182}{155325217768357854305654402532972940012188720164912381478811}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1587505433.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||