Normalized defining polynomial
\( x^{20} - 6 x^{19} + 11 x^{18} - 2 x^{17} + 2 x^{16} - 69 x^{15} + 121 x^{14} + 84 x^{13} - 547 x^{12} + 918 x^{11} - 1067 x^{10} + 1065 x^{9} - 471 x^{8} - 944 x^{7} + 2035 x^{6} - 1684 x^{5} + 530 x^{4} + 141 x^{3} - 133 x^{2} + 13 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(658618684118710741619590144=2^{10}\cdot 11^{16}\cdot 241^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{706} a^{18} - \frac{151}{706} a^{17} + \frac{53}{706} a^{16} + \frac{19}{353} a^{15} + \frac{62}{353} a^{14} + \frac{149}{706} a^{13} + \frac{129}{353} a^{12} - \frac{143}{353} a^{11} - \frac{168}{353} a^{10} + \frac{311}{706} a^{9} + \frac{289}{706} a^{8} + \frac{67}{353} a^{7} - \frac{127}{706} a^{6} + \frac{7}{706} a^{5} + \frac{3}{353} a^{4} - \frac{205}{706} a^{3} + \frac{95}{706} a^{2} + \frac{75}{706} a - \frac{107}{706}$, $\frac{1}{2141674660178} a^{19} + \frac{125207945}{1070837330089} a^{18} + \frac{17030058874}{1070837330089} a^{17} + \frac{241300098435}{2141674660178} a^{16} - \frac{530358290929}{2141674660178} a^{15} + \frac{570336140661}{2141674660178} a^{14} + \frac{5519856561}{2141674660178} a^{13} + \frac{173495727215}{2141674660178} a^{12} + \frac{667518583005}{2141674660178} a^{11} + \frac{240581878811}{1070837330089} a^{10} - \frac{481183572005}{2141674660178} a^{9} - \frac{334752660493}{1070837330089} a^{8} + \frac{108347836330}{1070837330089} a^{7} + \frac{165024512697}{1070837330089} a^{6} - \frac{168910617866}{1070837330089} a^{5} + \frac{15931368923}{2141674660178} a^{4} + \frac{95866039260}{1070837330089} a^{3} - \frac{485840181780}{1070837330089} a^{2} + \frac{56316701315}{1070837330089} a - \frac{379883179649}{1070837330089}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 535480.068813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.51660490321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||