Properties

Label 20.8.64861793659...5921.2
Degree $20$
Signature $[8, 6]$
Discriminant $11^{16}\cdot 109^{4}$
Root discriminant $17.40$
Ramified primes $11, 109$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T254

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 7, 19, 14, -51, -99, 49, 140, 100, -174, -136, 37, 153, 18, -77, -24, 15, 19, -6, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 6*x^18 + 19*x^17 + 15*x^16 - 24*x^15 - 77*x^14 + 18*x^13 + 153*x^12 + 37*x^11 - 136*x^10 - 174*x^9 + 100*x^8 + 140*x^7 + 49*x^6 - 99*x^5 - 51*x^4 + 14*x^3 + 19*x^2 + 7*x - 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - 6*x^18 + 19*x^17 + 15*x^16 - 24*x^15 - 77*x^14 + 18*x^13 + 153*x^12 + 37*x^11 - 136*x^10 - 174*x^9 + 100*x^8 + 140*x^7 + 49*x^6 - 99*x^5 - 51*x^4 + 14*x^3 + 19*x^2 + 7*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - 6 x^{18} + 19 x^{17} + 15 x^{16} - 24 x^{15} - 77 x^{14} + 18 x^{13} + 153 x^{12} + 37 x^{11} - 136 x^{10} - 174 x^{9} + 100 x^{8} + 140 x^{7} + 49 x^{6} - 99 x^{5} - 51 x^{4} + 14 x^{3} + 19 x^{2} + 7 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6486179365988627137555921=11^{16}\cdot 109^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 109$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{41871295816811} a^{19} + \frac{6602902019379}{41871295816811} a^{18} - \frac{16110064112735}{41871295816811} a^{17} - \frac{923075553407}{41871295816811} a^{16} - \frac{6013349985317}{41871295816811} a^{15} + \frac{14177544969657}{41871295816811} a^{14} - \frac{10072208067400}{41871295816811} a^{13} + \frac{12580756018846}{41871295816811} a^{12} + \frac{3289313304666}{41871295816811} a^{11} + \frac{7120220417521}{41871295816811} a^{10} + \frac{330555451929}{41871295816811} a^{9} + \frac{5384110348854}{41871295816811} a^{8} + \frac{3537861164433}{41871295816811} a^{7} - \frac{9936929289428}{41871295816811} a^{6} - \frac{11191889278461}{41871295816811} a^{5} - \frac{15354775215294}{41871295816811} a^{4} - \frac{17610934213965}{41871295816811} a^{3} - \frac{3387795973704}{41871295816811} a^{2} - \frac{19921820418911}{41871295816811} a + \frac{2350474388948}{41871295816811}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 52116.6493707 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T254:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2560
The 28 conjugacy class representatives for t20n254
Character table for t20n254 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.23365118029.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
109Data not computed