Normalized defining polynomial
\( x^{20} - 2 x^{19} + 10 x^{18} + 22 x^{17} - 129 x^{16} + 258 x^{15} + 34 x^{14} - 2052 x^{13} + 3258 x^{12} + 932 x^{11} - 9710 x^{10} + 5342 x^{9} - 2302 x^{8} + 12234 x^{7} + 20642 x^{6} + 1680 x^{5} - 13423 x^{4} - 16766 x^{3} + 2348 x^{2} + 3188 x + 431 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(643030346221425086720000000000000=2^{20}\cdot 5^{13}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{5345038174514814329987380413296242770721434238} a^{19} - \frac{322728176685832871497836089660713059995813204}{2672519087257407164993690206648121385360717119} a^{18} - \frac{991445035163773219512225561187246538822321121}{5345038174514814329987380413296242770721434238} a^{17} - \frac{21145417849705118823468691824980092483462931}{2672519087257407164993690206648121385360717119} a^{16} + \frac{46711515217564683990002236032487558720530829}{5345038174514814329987380413296242770721434238} a^{15} + \frac{348051626758777268281146063661754874340380210}{2672519087257407164993690206648121385360717119} a^{14} + \frac{176459900269686928689054389483065970744719104}{2672519087257407164993690206648121385360717119} a^{13} - \frac{1039240747155171573884401850775218021055914095}{5345038174514814329987380413296242770721434238} a^{12} - \frac{634277762927568249401306992383623902641952783}{2672519087257407164993690206648121385360717119} a^{11} + \frac{616823285184270233657515757590004843540119662}{2672519087257407164993690206648121385360717119} a^{10} + \frac{1252625839099087405564387134081260281766754963}{5345038174514814329987380413296242770721434238} a^{9} - \frac{2492054148519475185245429497718501671407783239}{5345038174514814329987380413296242770721434238} a^{8} + \frac{1162771925869472714087868188720259715493760949}{5345038174514814329987380413296242770721434238} a^{7} - \frac{550179998406802985465632950436761304456677349}{2672519087257407164993690206648121385360717119} a^{6} + \frac{1270635406448218623735601323845278272086443298}{2672519087257407164993690206648121385360717119} a^{5} + \frac{485022038881017461198599607430507781801429387}{5345038174514814329987380413296242770721434238} a^{4} + \frac{2608465503696823022221794617106039509589683091}{5345038174514814329987380413296242770721434238} a^{3} - \frac{1055656112863349055399476794144160366315936818}{2672519087257407164993690206648121385360717119} a^{2} + \frac{914451176445509373363436848855255951743306651}{2672519087257407164993690206648121385360717119} a - \frac{5357120168634357826548933847218909527454349}{12401480683329035568416195854515644479632098}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 897831739.909 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 3469 | Data not computed | ||||||