Normalized defining polynomial
\( x^{20} - 6 x^{19} + 17 x^{18} - 40 x^{17} + 129 x^{16} - 502 x^{15} + 606 x^{14} + 2818 x^{13} - 9074 x^{12} + 6836 x^{11} + 5977 x^{10} - 31002 x^{9} + 86602 x^{8} - 132122 x^{7} + 129997 x^{6} - 132002 x^{5} + 104262 x^{4} - 31332 x^{3} + 5691 x^{2} - 3236 x - 3317 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6425671142455392841415396485496832=2^{20}\cdot 3\cdot 19\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{5}{13} a^{16} - \frac{5}{13} a^{13} + \frac{3}{13} a^{11} - \frac{4}{13} a^{10} - \frac{1}{13} a^{9} - \frac{2}{13} a^{8} - \frac{4}{13} a^{7} + \frac{4}{13} a^{6} - \frac{3}{13} a^{5} + \frac{5}{13} a^{3} - \frac{6}{13} a - \frac{4}{13}$, $\frac{1}{39} a^{18} + \frac{1}{39} a^{16} - \frac{1}{3} a^{15} + \frac{8}{39} a^{14} - \frac{4}{13} a^{13} + \frac{16}{39} a^{12} - \frac{2}{39} a^{11} + \frac{6}{13} a^{10} + \frac{19}{39} a^{9} - \frac{14}{39} a^{8} - \frac{16}{39} a^{7} - \frac{3}{13} a^{6} + \frac{11}{39} a^{5} - \frac{8}{39} a^{4} - \frac{1}{39} a^{3} - \frac{19}{39} a^{2} - \frac{8}{39} a + \frac{19}{39}$, $\frac{1}{2802528416100986646257719957005917540259} a^{19} + \frac{12193224142273188275399578091639423659}{2802528416100986646257719957005917540259} a^{18} - \frac{68211636931533034081734579977506806788}{2802528416100986646257719957005917540259} a^{17} - \frac{288228883026776105215646460103342813905}{934176138700328882085906652335305846753} a^{16} + \frac{270351202461834137521976126020407365413}{2802528416100986646257719957005917540259} a^{15} + \frac{1062003132397473054883612878118091457050}{2802528416100986646257719957005917540259} a^{14} + \frac{1238409969267670458043969820092090622842}{2802528416100986646257719957005917540259} a^{13} + \frac{1215559551392844589327849200816753911399}{2802528416100986646257719957005917540259} a^{12} + \frac{954141513460570650038323908131718370567}{2802528416100986646257719957005917540259} a^{11} + \frac{1122661149706214101781844386841417749743}{2802528416100986646257719957005917540259} a^{10} + \frac{1321718667627742625503357638387147835523}{2802528416100986646257719957005917540259} a^{9} - \frac{55749850859240449872850218030288107094}{934176138700328882085906652335305846753} a^{8} - \frac{280769262615079488361492711005797917930}{2802528416100986646257719957005917540259} a^{7} + \frac{129116646977510321410465484889421579976}{2802528416100986646257719957005917540259} a^{6} - \frac{398769177115687053263211641162687121279}{934176138700328882085906652335305846753} a^{5} - \frac{94975813013636731536041860172177192058}{934176138700328882085906652335305846753} a^{4} + \frac{170189937024120691117705026468163203280}{2802528416100986646257719957005917540259} a^{3} + \frac{202192579384297319989744259166891318182}{934176138700328882085906652335305846753} a^{2} - \frac{32954744932525728626106839551667795932}{215579108930845126635209227461993656943} a + \frac{759296127945808628103321961750082863453}{2802528416100986646257719957005917540259}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4136248532.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n852 are not computed |
| Character table for t20n852 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.10617489000449024.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||