Normalized defining polynomial
\( x^{20} - 4 x^{19} - 11 x^{18} + 48 x^{17} - 11 x^{16} + 260 x^{15} - 1426 x^{14} + 2382 x^{13} - 4213 x^{12} + 12906 x^{11} - 25957 x^{10} + 33292 x^{9} - 43527 x^{8} + 74738 x^{7} - 101662 x^{6} + 72180 x^{5} - 4859 x^{4} - 27164 x^{3} + 14947 x^{2} - 1464 x - 439 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6364883959565411703183364041211904=2^{20}\cdot 13^{15}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{14} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{25} a^{18} - \frac{2}{25} a^{17} + \frac{1}{25} a^{16} - \frac{2}{25} a^{15} + \frac{1}{25} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{8}{25} a^{11} - \frac{9}{25} a^{10} + \frac{1}{5} a^{9} + \frac{9}{25} a^{8} - \frac{1}{5} a^{7} - \frac{8}{25} a^{6} + \frac{7}{25} a^{5} + \frac{4}{25} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{9}{25} a - \frac{11}{25}$, $\frac{1}{18056784338271362633648957584740700025} a^{19} - \frac{360854568298809280451997246587548131}{18056784338271362633648957584740700025} a^{18} - \frac{1509447091006067289820132102227241351}{18056784338271362633648957584740700025} a^{17} + \frac{1650936686960438141571865930919056194}{18056784338271362633648957584740700025} a^{16} + \frac{302514625742971583639717648240684109}{18056784338271362633648957584740700025} a^{15} + \frac{2680762568158074254817716555919371351}{18056784338271362633648957584740700025} a^{14} - \frac{1454133880130407533586563730269409176}{3611356867654272526729791516948140005} a^{13} - \frac{5860840485972425765662748220961586178}{18056784338271362633648957584740700025} a^{12} + \frac{5845023681612672586269285743472603433}{18056784338271362633648957584740700025} a^{11} + \frac{3156587209531008070260230859773766051}{18056784338271362633648957584740700025} a^{10} + \frac{3306444083230725720504588111600091839}{18056784338271362633648957584740700025} a^{9} + \frac{1625479667443748275029046097174366769}{18056784338271362633648957584740700025} a^{8} - \frac{5533561069404226238313371052231387163}{18056784338271362633648957584740700025} a^{7} + \frac{6751815725383300153257371137942339914}{18056784338271362633648957584740700025} a^{6} + \frac{5653299768913718635625170268083524366}{18056784338271362633648957584740700025} a^{5} + \frac{7016471673247200491164687341762467634}{18056784338271362633648957584740700025} a^{4} + \frac{1515377551665606067434195528789248411}{3611356867654272526729791516948140005} a^{3} + \frac{972366471545581885457104013140001271}{18056784338271362633648957584740700025} a^{2} - \frac{1335645556313708231027199106077189317}{3611356867654272526729791516948140005} a - \frac{896153940624723253833002234354590866}{18056784338271362633648957584740700025}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3846298008.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.12.11.6 | $x^{12} - 13312$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.5.1 | $x^{6} - 17$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |