Properties

Label 20.8.63293522824...5625.1
Degree $20$
Signature $[8, 6]$
Discriminant $3^{2}\cdot 5^{10}\cdot 19^{8}\cdot 29^{6}\cdot 7128529$
Root discriminant $48.99$
Ramified primes $3, 5, 19, 29, 7128529$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T955

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![71, 85, -400, -43, 1385, -475, -2150, 1626, 1756, -2546, -592, 2276, -336, -1156, 486, 268, -212, 6, 31, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 31*x^18 + 6*x^17 - 212*x^16 + 268*x^15 + 486*x^14 - 1156*x^13 - 336*x^12 + 2276*x^11 - 592*x^10 - 2546*x^9 + 1756*x^8 + 1626*x^7 - 2150*x^6 - 475*x^5 + 1385*x^4 - 43*x^3 - 400*x^2 + 85*x + 71)
 
gp: K = bnfinit(x^20 - 10*x^19 + 31*x^18 + 6*x^17 - 212*x^16 + 268*x^15 + 486*x^14 - 1156*x^13 - 336*x^12 + 2276*x^11 - 592*x^10 - 2546*x^9 + 1756*x^8 + 1626*x^7 - 2150*x^6 - 475*x^5 + 1385*x^4 - 43*x^3 - 400*x^2 + 85*x + 71, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 31 x^{18} + 6 x^{17} - 212 x^{16} + 268 x^{15} + 486 x^{14} - 1156 x^{13} - 336 x^{12} + 2276 x^{11} - 592 x^{10} - 2546 x^{9} + 1756 x^{8} + 1626 x^{7} - 2150 x^{6} - 475 x^{5} + 1385 x^{4} - 43 x^{3} - 400 x^{2} + 85 x + 71 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6329352282423861537868725791015625=3^{2}\cdot 5^{10}\cdot 19^{8}\cdot 29^{6}\cdot 7128529\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 19, 29, 7128529$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{939} a^{18} - \frac{3}{313} a^{17} - \frac{52}{313} a^{16} - \frac{142}{313} a^{15} - \frac{101}{939} a^{14} - \frac{64}{939} a^{13} - \frac{380}{939} a^{12} + \frac{466}{939} a^{11} + \frac{54}{313} a^{10} + \frac{244}{939} a^{9} - \frac{25}{313} a^{8} - \frac{14}{313} a^{7} + \frac{40}{939} a^{6} - \frac{248}{939} a^{5} - \frac{128}{939} a^{4} + \frac{347}{939} a^{3} + \frac{34}{313} a^{2} + \frac{89}{313} a - \frac{448}{939}$, $\frac{1}{939} a^{19} - \frac{79}{313} a^{17} + \frac{16}{313} a^{16} - \frac{179}{939} a^{15} - \frac{34}{939} a^{14} - \frac{17}{939} a^{13} - \frac{137}{939} a^{12} - \frac{113}{313} a^{11} - \frac{176}{939} a^{10} + \frac{81}{313} a^{9} + \frac{74}{313} a^{8} - \frac{338}{939} a^{7} + \frac{112}{939} a^{6} + \frac{457}{939} a^{5} + \frac{134}{939} a^{4} + \frac{136}{313} a^{3} + \frac{82}{313} a^{2} + \frac{77}{939} a - \frac{92}{313}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2621433624.36 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T955:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 819200
The 275 conjugacy class representatives for t20n955 are not computed
Character table for t20n955 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.9932496465625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ R R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.5.4.1$x^{5} - 19$$5$$1$$4$$D_{5}$$[\ ]_{5}^{2}$
19.5.4.1$x^{5} - 19$$5$$1$$4$$D_{5}$$[\ ]_{5}^{2}$
19.8.0.1$x^{8} - x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
7128529Data not computed