Normalized defining polynomial
\( x^{20} - 6 x^{18} - 35 x^{16} + 264 x^{14} + 50 x^{12} - 2388 x^{10} + 786 x^{8} + 11688 x^{6} - 5427 x^{4} - 32598 x^{2} + 31761 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61571735716086245423376000000000000=2^{16}\cdot 3^{14}\cdot 5^{12}\cdot 691^{4}\cdot 3529\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 691, 3529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} + \frac{1}{16}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{5} + \frac{1}{16} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{32} a^{2} - \frac{1}{32}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} + \frac{1}{16} a^{5} + \frac{1}{32} a^{3} - \frac{1}{32} a$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{8} - \frac{5}{64} a^{4} + \frac{3}{64}$, $\frac{1}{64} a^{13} + \frac{1}{64} a^{9} - \frac{5}{64} a^{5} + \frac{3}{64} a$, $\frac{1}{384} a^{14} - \frac{1}{128} a^{12} + \frac{1}{384} a^{10} - \frac{1}{128} a^{8} + \frac{11}{384} a^{6} - \frac{11}{128} a^{4} + \frac{17}{128} a^{2} - \frac{51}{128}$, $\frac{1}{384} a^{15} - \frac{1}{128} a^{13} + \frac{1}{384} a^{11} - \frac{1}{128} a^{9} + \frac{11}{384} a^{7} - \frac{11}{128} a^{5} + \frac{17}{128} a^{3} - \frac{51}{128} a$, $\frac{1}{768} a^{16} + \frac{1}{192} a^{12} + \frac{7}{384} a^{8} + \frac{7}{64} a^{4} + \frac{51}{256}$, $\frac{1}{1536} a^{17} - \frac{1}{1536} a^{16} - \frac{1}{192} a^{13} + \frac{1}{192} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{13}{768} a^{9} + \frac{11}{768} a^{8} - \frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{1}{16} a^{4} + \frac{3}{64} a^{3} + \frac{3}{64} a^{2} + \frac{79}{512} a - \frac{127}{512}$, $\frac{1}{408576} a^{18} - \frac{5}{19456} a^{16} - \frac{5}{7296} a^{14} + \frac{51}{8512} a^{12} - \frac{661}{68096} a^{10} + \frac{1201}{68096} a^{8} - \frac{295}{6384} a^{6} - \frac{1433}{17024} a^{4} + \frac{26567}{136192} a^{2} + \frac{40281}{136192}$, $\frac{1}{817152} a^{19} - \frac{1}{817152} a^{18} - \frac{5}{38912} a^{17} + \frac{5}{38912} a^{16} - \frac{5}{14592} a^{15} + \frac{5}{14592} a^{14} + \frac{51}{17024} a^{13} - \frac{51}{17024} a^{12} - \frac{661}{136192} a^{11} + \frac{661}{136192} a^{10} + \frac{1201}{136192} a^{9} - \frac{1201}{136192} a^{8} - \frac{295}{12768} a^{7} + \frac{295}{12768} a^{6} + \frac{2823}{34048} a^{5} - \frac{2823}{34048} a^{4} - \frac{41529}{272384} a^{3} + \frac{41529}{272384} a^{2} - \frac{61863}{272384} a + \frac{61863}{272384}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6142181976.58 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.5438807015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.12.14.12 | $x^{12} + 9 x^{11} + 9 x^{10} + 12 x^{8} + 12 x^{6} + 9 x^{5} + 9 x^{4} - 9 x^{2} - 9$ | $6$ | $2$ | $14$ | 12T39 | $[3/2, 3/2]_{2}^{4}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 691 | Data not computed | ||||||
| 3529 | Data not computed | ||||||