Normalized defining polynomial
\( x^{20} - 4 x^{19} - 20 x^{18} + 72 x^{17} + 188 x^{16} - 236 x^{15} - 1824 x^{14} - 1304 x^{13} + 8035 x^{12} + 14802 x^{11} + 16700 x^{10} - 87116 x^{9} - 106866 x^{8} - 21442 x^{7} + 293328 x^{6} + 432972 x^{5} + 76430 x^{4} - 646564 x^{3} - 289610 x^{2} - 69246 x - 323829 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6137624919604778598575554238087168=2^{30}\cdot 89417^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{12235175025746834844705809300259734886651361301552547568233} a^{19} + \frac{1274402900571138437341149313278797832902247731880439977092}{12235175025746834844705809300259734886651361301552547568233} a^{18} + \frac{2090500402265612236142635298943122597439415260704328023692}{12235175025746834844705809300259734886651361301552547568233} a^{17} - \frac{733102700241056904770460951784335882856860203942634178077}{4078391675248944948235269766753244962217120433850849189411} a^{16} - \frac{1234827919116039372631895530233973462243961273514876333601}{12235175025746834844705809300259734886651361301552547568233} a^{15} - \frac{2808088494199732143217322075323275903883836865046551396232}{12235175025746834844705809300259734886651361301552547568233} a^{14} + \frac{202191082694683072904187639106348060243050600617219164108}{4078391675248944948235269766753244962217120433850849189411} a^{13} + \frac{1684715346226412653977227096701555106010094691291731309669}{12235175025746834844705809300259734886651361301552547568233} a^{12} + \frac{5990818498655544068261387102035536561196798516415716860574}{12235175025746834844705809300259734886651361301552547568233} a^{11} - \frac{1393530187740822488746396563956038719910995291280974970535}{4078391675248944948235269766753244962217120433850849189411} a^{10} + \frac{899203077380677191691909183580852275526059871800708749509}{12235175025746834844705809300259734886651361301552547568233} a^{9} + \frac{2994971543321250186546141592837802703877114918692791623546}{12235175025746834844705809300259734886651361301552547568233} a^{8} - \frac{525969797866241587610787001615415027144571893092267298219}{4078391675248944948235269766753244962217120433850849189411} a^{7} + \frac{2134088703266583571126667379085366098652280967556682203589}{12235175025746834844705809300259734886651361301552547568233} a^{6} + \frac{553585193557493096344207218553370460145812285307962186820}{4078391675248944948235269766753244962217120433850849189411} a^{5} - \frac{224604842920231261775480323495898338223996880330806375813}{4078391675248944948235269766753244962217120433850849189411} a^{4} + \frac{3148250671336999082863899378500219973726175344022608381596}{12235175025746834844705809300259734886651361301552547568233} a^{3} + \frac{428684273821827642949931740762611848232279411337664034620}{12235175025746834844705809300259734886651361301552547568233} a^{2} - \frac{4096577271595519486451360248660484082448430497475797787870}{12235175025746834844705809300259734886651361301552547568233} a + \frac{2018771441609430711828142713490511682818609839008746597563}{4078391675248944948235269766753244962217120433850849189411}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2252962863.18 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.8187289486336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89417 | Data not computed | ||||||