Normalized defining polynomial
\( x^{20} - 26 x^{18} - 52 x^{17} + 114 x^{16} + 1114 x^{15} + 660 x^{14} - 6202 x^{13} - 6816 x^{12} + 2590 x^{11} + 29930 x^{10} + 27898 x^{9} - 54473 x^{8} - 366 x^{7} - 46534 x^{6} + 251128 x^{5} - 161650 x^{4} - 7582 x^{3} - 321116 x^{2} + 142390 x - 9721 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6137624919604778598575554238087168=2^{30}\cdot 89417^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1260008268273816805218390925530061529893010231095835792887} a^{19} - \frac{548290846393428230121759736016012089865864777163507925161}{1260008268273816805218390925530061529893010231095835792887} a^{18} + \frac{142298112977721899803756813189786863129376240086795054438}{1260008268273816805218390925530061529893010231095835792887} a^{17} - \frac{49241348644551920616735480073406343108941085845195350722}{1260008268273816805218390925530061529893010231095835792887} a^{16} + \frac{81553194688488037875667574822386601235967577723304998157}{1260008268273816805218390925530061529893010231095835792887} a^{15} + \frac{429455705960684816362232054560298183862677168241126716387}{1260008268273816805218390925530061529893010231095835792887} a^{14} - \frac{615770507582883998297553196054877507809132649672945685987}{1260008268273816805218390925530061529893010231095835792887} a^{13} - \frac{223362689116508478004839471584631864914202859496011907414}{1260008268273816805218390925530061529893010231095835792887} a^{12} - \frac{177193348335115710299221223611022191823932425301190547037}{1260008268273816805218390925530061529893010231095835792887} a^{11} - \frac{570425337413315274970650215788948451724035735880365708210}{1260008268273816805218390925530061529893010231095835792887} a^{10} - \frac{385297358564390200447704292885817547589308411774520004563}{1260008268273816805218390925530061529893010231095835792887} a^{9} + \frac{350022912889199075197481849432457249097712484202774975767}{1260008268273816805218390925530061529893010231095835792887} a^{8} - \frac{424523345063126065443410961986848391351709435584373909630}{1260008268273816805218390925530061529893010231095835792887} a^{7} + \frac{550031827570753285585408939193095964290201311180341627036}{1260008268273816805218390925530061529893010231095835792887} a^{6} + \frac{287865240548430559679546798366586539976946966523706714514}{1260008268273816805218390925530061529893010231095835792887} a^{5} - \frac{181752711579487356541381436443649301187874860835878676070}{1260008268273816805218390925530061529893010231095835792887} a^{4} + \frac{207765147694214429617215837228373186841118241316058395918}{1260008268273816805218390925530061529893010231095835792887} a^{3} + \frac{232108502425120702681004259847074048387810960286522129542}{1260008268273816805218390925530061529893010231095835792887} a^{2} - \frac{518254414854772384366548087996736950276463760199814274364}{1260008268273816805218390925530061529893010231095835792887} a - \frac{491746837245063451131276438050603914296923763800692911691}{1260008268273816805218390925530061529893010231095835792887}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2349491049.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.8187289486336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89417 | Data not computed | ||||||