Normalized defining polynomial
\( x^{20} - 8 x^{19} + 42 x^{18} - 316 x^{17} + 1343 x^{16} - 5704 x^{15} + 22066 x^{14} - 60828 x^{13} + 217183 x^{12} - 331524 x^{11} + 1185192 x^{10} - 823644 x^{9} + 3892137 x^{8} + 2160304 x^{7} + 1887716 x^{6} + 13096568 x^{5} - 34808130 x^{4} - 732960 x^{3} + 12280096 x^{2} + 1273344 x - 369536 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(612576255759573370734751264818904170496=2^{48}\cdot 31^{10}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{48} a^{18} - \frac{1}{12} a^{17} - \frac{1}{8} a^{16} - \frac{5}{12} a^{15} + \frac{5}{16} a^{14} - \frac{1}{4} a^{13} - \frac{7}{24} a^{12} - \frac{5}{12} a^{11} + \frac{5}{16} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{5}{12} a^{7} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} + \frac{5}{12} a^{4} - \frac{1}{6} a^{3} - \frac{3}{8} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{9505782975930384944858876083764697643204350118968541757582221995339552918848} a^{19} + \frac{2604031130349112566103549032068578853460673481692996954088716471950375}{2244046972599241016255636469255122200945314003533650084415066571137760368} a^{18} + \frac{558799042084016379758135652941468390451623810810180100331801487779762178065}{4752891487965192472429438041882348821602175059484270878791110997669776459424} a^{17} - \frac{94854104605140584401148865688285043877589006437460460949114367836738720809}{2376445743982596236214719020941174410801087529742135439395555498834888229712} a^{16} + \frac{1856259196591628895083798425165410545958221350876797119484653809672397228959}{9505782975930384944858876083764697643204350118968541757582221995339552918848} a^{15} + \frac{44619949023689159033761829646317058335235314864428301178324944712813290597}{792148581327532078738239673647058136933695843247378479798518499611629409904} a^{14} + \frac{1205045671684344419532597307588931435121652965087283246659800654227548812669}{4752891487965192472429438041882348821602175059484270878791110997669776459424} a^{13} - \frac{723984109763274261387651726807428568891378132464803582892713605900697053529}{2376445743982596236214719020941174410801087529742135439395555498834888229712} a^{12} + \frac{1556474321814526194312419026203708789993513337614760765512133907142519272383}{9505782975930384944858876083764697643204350118968541757582221995339552918848} a^{11} - \frac{37416345868332583354635643505840776011651882999642722033640964395709026101}{148527858998912264763419938808823400675067970608883464962222218677180514357} a^{10} + \frac{107706007155097456396264723452722893743311952669763520267140505392267672147}{297055717997824529526839877617646801350135941217766929924444437354361028714} a^{9} + \frac{103049796041043563441228100868252626688593719020015308144899024154103557107}{792148581327532078738239673647058136933695843247378479798518499611629409904} a^{8} + \frac{2454606358347353926383482270603710848403062468269296321869277926740074072601}{9505782975930384944858876083764697643204350118968541757582221995339552918848} a^{7} - \frac{204974641042072601341068695997635477778272143873657147317074831411796108095}{792148581327532078738239673647058136933695843247378479798518499611629409904} a^{6} - \frac{890613737897696031709105605597786537706773821503231014875714115854083739377}{2376445743982596236214719020941174410801087529742135439395555498834888229712} a^{5} - \frac{67915474160410858139068551091314279567372619127069420812929510059752751577}{396074290663766039369119836823529068466847921623689239899259249805814704952} a^{4} - \frac{665608633453591718157128260993826620449867317718847837840949048834594550625}{4752891487965192472429438041882348821602175059484270878791110997669776459424} a^{3} - \frac{557189091409708016240685309237826353041057988772584068300531179736783337979}{1188222871991298118107359510470587205400543764871067719697777749417444114856} a^{2} + \frac{31904087836888995185851298066337240175278737136317965927696107162255992117}{198037145331883019684559918411764534233423960811844619949629624902907352476} a + \frac{23029646553254736225950801357504550614445779397813437916422812308495415826}{148527858998912264763419938808823400675067970608883464962222218677180514357}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4894419339420 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.12.26.27 | $x^{12} - 2 x^{10} + 4 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||