Normalized defining polynomial
\( x^{20} - 4 x^{19} + 3 x^{18} - 20 x^{17} + 79 x^{16} - 72 x^{15} + 120 x^{14} - 386 x^{13} + 384 x^{12} - 158 x^{11} - 237 x^{10} + 723 x^{9} - 494 x^{8} + 342 x^{7} - 61 x^{6} - 380 x^{5} + 165 x^{4} - 47 x^{3} - 6 x^{2} + 2 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6080288126995835830114472912=2^{4}\cdot 53^{7}\cdot 4241^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53, 4241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7827751053564817313611343} a^{19} + \frac{2142753727433880685529241}{7827751053564817313611343} a^{18} - \frac{3810623063731086718568181}{7827751053564817313611343} a^{17} - \frac{1795412558683176876253241}{7827751053564817313611343} a^{16} - \frac{3627461451377025981067115}{7827751053564817313611343} a^{15} - \frac{194609438234637913104895}{7827751053564817313611343} a^{14} + \frac{320830553748322269329549}{711613732142256119419213} a^{13} - \frac{2834958303627221310047213}{7827751053564817313611343} a^{12} + \frac{2160221840312942971925420}{7827751053564817313611343} a^{11} + \frac{47107039823043579858}{20437992306957747555121} a^{10} - \frac{223821111190798022705867}{711613732142256119419213} a^{9} + \frac{1644121363857609451479541}{7827751053564817313611343} a^{8} - \frac{1467730002355403244966632}{7827751053564817313611343} a^{7} + \frac{297014022335518579176368}{7827751053564817313611343} a^{6} + \frac{2465823382823731603403974}{7827751053564817313611343} a^{5} - \frac{595584799802467186301668}{7827751053564817313611343} a^{4} - \frac{1636588306317036653169055}{7827751053564817313611343} a^{3} - \frac{393485929265473772574787}{7827751053564817313611343} a^{2} - \frac{3613235243162636185756148}{7827751053564817313611343} a - \frac{3733699729076931344517910}{7827751053564817313611343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2159663.64274 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n804 are not computed |
| Character table for t20n804 is not computed |
Intermediate fields
| 5.5.224773.1, 10.6.50522901529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 53 | Data not computed | ||||||
| 4241 | Data not computed | ||||||