Normalized defining polynomial
\( x^{20} - 6 x^{19} + 2 x^{18} + 41 x^{17} - 78 x^{16} - 62 x^{15} + 154 x^{14} + 111 x^{13} - 615 x^{12} + 1334 x^{11} - 1068 x^{10} - 2034 x^{9} + 6944 x^{8} - 9330 x^{7} + 7730 x^{6} - 6010 x^{5} + 5691 x^{4} - 4180 x^{3} + 1160 x^{2} + 553 x - 337 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60656583790251750925293253033984=2^{24}\cdot 83^{5}\cdot 983^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{150582927524798408296814660284301} a^{19} - \frac{57054973272327264458306334259679}{150582927524798408296814660284301} a^{18} + \frac{46541148404982665563518360886216}{150582927524798408296814660284301} a^{17} + \frac{35607636603557104820554942820172}{150582927524798408296814660284301} a^{16} - \frac{27910615039232099880740518298677}{150582927524798408296814660284301} a^{15} + \frac{8352663550975684868267255458912}{150582927524798408296814660284301} a^{14} + \frac{56398746619355480740144097073535}{150582927524798408296814660284301} a^{13} - \frac{5250044517935183866293302857670}{150582927524798408296814660284301} a^{12} - \frac{365250588510351308087967318372}{150582927524798408296814660284301} a^{11} - \frac{62328756866440530973683846184558}{150582927524798408296814660284301} a^{10} + \frac{64150212992491513523776105262086}{150582927524798408296814660284301} a^{9} - \frac{67275027314761295478706010111888}{150582927524798408296814660284301} a^{8} - \frac{57671736471039750159385345000870}{150582927524798408296814660284301} a^{7} - \frac{65261886154906232404228032521833}{150582927524798408296814660284301} a^{6} - \frac{70414433766868836057245214470155}{150582927524798408296814660284301} a^{5} + \frac{42215129510350395529824888744349}{150582927524798408296814660284301} a^{4} - \frac{60550954034068973879636063303325}{150582927524798408296814660284301} a^{3} - \frac{29632457413700389154115034758237}{150582927524798408296814660284301} a^{2} + \frac{4770505915100706389179534862140}{150582927524798408296814660284301} a + \frac{40428322080643409090264674210853}{150582927524798408296814660284301}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153839190.431 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||