Normalized defining polynomial
\( x^{20} - 5 x^{19} + 21 x^{18} - 6 x^{17} - 133 x^{16} + 691 x^{15} - 2067 x^{14} + 4200 x^{13} - 6887 x^{12} + 7539 x^{11} - 4791 x^{10} - 3064 x^{9} + 13209 x^{8} - 18369 x^{7} + 15399 x^{6} - 2356 x^{5} - 7759 x^{4} + 11773 x^{3} - 5869 x^{2} + 778 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60656583790251750925293253033984=2^{24}\cdot 83^{5}\cdot 983^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{8511279855477965236251444214813899615742} a^{19} - \frac{1450365716228510654161489307040433738315}{8511279855477965236251444214813899615742} a^{18} + \frac{1510900550833184014564917496897298603887}{8511279855477965236251444214813899615742} a^{17} - \frac{1043554259848705242033602707537531948224}{4255639927738982618125722107406949807871} a^{16} - \frac{2562246471150535383760056935276557141197}{8511279855477965236251444214813899615742} a^{15} - \frac{3437429135830328672278653680008719426931}{8511279855477965236251444214813899615742} a^{14} - \frac{3047944797231041047573698430108299025153}{8511279855477965236251444214813899615742} a^{13} - \frac{1291874864936907406652416348590045830497}{4255639927738982618125722107406949807871} a^{12} + \frac{1631018381340293226105937017392316976399}{8511279855477965236251444214813899615742} a^{11} + \frac{3439461782290124363547099174228517655169}{8511279855477965236251444214813899615742} a^{10} - \frac{2491847809952684852254301431062905760033}{8511279855477965236251444214813899615742} a^{9} + \frac{1750929812605141252831437887507934549223}{4255639927738982618125722107406949807871} a^{8} + \frac{1673720678886195864577546633505227510559}{8511279855477965236251444214813899615742} a^{7} - \frac{1290325445249954564840255270578405682889}{8511279855477965236251444214813899615742} a^{6} - \frac{1073894759223534833642624115174847941759}{8511279855477965236251444214813899615742} a^{5} - \frac{2081188311032585040730499719148613374492}{4255639927738982618125722107406949807871} a^{4} - \frac{2626712888222747365728577528740698175339}{8511279855477965236251444214813899615742} a^{3} - \frac{3921842383566518890670444412752860741381}{8511279855477965236251444214813899615742} a^{2} + \frac{565666106012849210201686057194996391863}{8511279855477965236251444214813899615742} a - \frac{1865126360285774424797916927480971380065}{4255639927738982618125722107406949807871}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249013468.345 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||