Normalized defining polynomial
\( x^{20} + 7 x^{18} - 38 x^{17} - x^{16} - 96 x^{15} + 594 x^{14} + 60 x^{13} + 591 x^{12} - 9764 x^{11} + 7103 x^{10} - 2574 x^{9} + 50897 x^{8} - 53828 x^{7} + 16940 x^{6} - 33280 x^{5} - 1281 x^{4} + 49772 x^{3} - 27551 x^{2} + 534 x + 1483 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60656583790251750925293253033984=2^{24}\cdot 83^{5}\cdot 983^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{1080285877728588959188266168704301203093581496} a^{19} + \frac{15665291926435972319992796426143507315272123}{1080285877728588959188266168704301203093581496} a^{18} - \frac{66524157002469902758062587918727796144490243}{1080285877728588959188266168704301203093581496} a^{17} + \frac{24564920967885239529273996007153590893614961}{540142938864294479594133084352150601546790748} a^{16} + \frac{30872789881015408568841638490878282826207246}{135035734716073619898533271088037650386697687} a^{15} + \frac{58387237525489251691521467253378258367470663}{270071469432147239797066542176075300773395374} a^{14} - \frac{73507221604893431558025970699901546972655499}{540142938864294479594133084352150601546790748} a^{13} - \frac{103523293012693232887540294469334177705009579}{540142938864294479594133084352150601546790748} a^{12} - \frac{260758677642156373980923326281750651463907829}{1080285877728588959188266168704301203093581496} a^{11} + \frac{185952500505632324773080273053288970611926351}{1080285877728588959188266168704301203093581496} a^{10} - \frac{105972396116944973668694802355161446899219817}{1080285877728588959188266168704301203093581496} a^{9} - \frac{447093344495305268032384943359661605957297}{135035734716073619898533271088037650386697687} a^{8} + \frac{65924086012837425150074964532873164180918365}{540142938864294479594133084352150601546790748} a^{7} + \frac{18633022564161425072064327496856653432523447}{270071469432147239797066542176075300773395374} a^{6} - \frac{8692557645264571598912205408190634583047597}{41549456835714959968779468027088507811291596} a^{5} + \frac{14474763670479351690207846281352419444975369}{41549456835714959968779468027088507811291596} a^{4} - \frac{268981130977810651952221535686669125208134665}{1080285877728588959188266168704301203093581496} a^{3} + \frac{345704319229129121420789983776864518753440667}{1080285877728588959188266168704301203093581496} a^{2} - \frac{253831883508680644282794006789391474470576435}{1080285877728588959188266168704301203093581496} a - \frac{30066315358697210522831200958937407086872309}{540142938864294479594133084352150601546790748}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 255582331.632 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||