Normalized defining polynomial
\( x^{20} - 2 x^{19} + 12 x^{18} + 5 x^{17} - 6 x^{16} + 177 x^{15} - 33 x^{14} - 151 x^{13} + 561 x^{12} - 478 x^{11} - 1812 x^{10} + 96 x^{9} + 537 x^{8} - 1317 x^{7} + 1082 x^{6} + 3262 x^{5} + 354 x^{4} - 2274 x^{3} - 414 x^{2} + 610 x - 61 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(600185956979737536135275366437=61^{4}\cdot 167^{2}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 167, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{17} + \frac{1}{11} a^{16} + \frac{4}{11} a^{15} + \frac{2}{11} a^{14} - \frac{1}{11} a^{13} + \frac{2}{11} a^{12} - \frac{3}{11} a^{11} + \frac{5}{11} a^{10} - \frac{5}{11} a^{9} - \frac{2}{11} a^{8} - \frac{4}{11} a^{7} - \frac{2}{11} a^{6} + \frac{5}{11} a^{5} - \frac{4}{11} a^{4} + \frac{5}{11} a^{3} - \frac{1}{11} a^{2} + \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{3346034098576054254033019325883611369} a^{19} + \frac{99179851506990987154534782537540946}{3346034098576054254033019325883611369} a^{18} + \frac{1141048662670766702609799995379767454}{3346034098576054254033019325883611369} a^{17} - \frac{105737780357738087440264284473224849}{304184918052368568548456302353055579} a^{16} + \frac{743868909816569556608461741193554798}{3346034098576054254033019325883611369} a^{15} + \frac{1252755080368688824282744192332706322}{3346034098576054254033019325883611369} a^{14} + \frac{1255377053421994379670770080013053370}{3346034098576054254033019325883611369} a^{13} - \frac{109023863338037041425213709410141381}{304184918052368568548456302353055579} a^{12} - \frac{889040624941266889036137183571541604}{3346034098576054254033019325883611369} a^{11} - \frac{811020227512930444518369288686136387}{3346034098576054254033019325883611369} a^{10} - \frac{154293967294682478437528462625432744}{3346034098576054254033019325883611369} a^{9} - \frac{1557966540532091565956665068135844364}{3346034098576054254033019325883611369} a^{8} + \frac{295282272073729133898985417024925359}{3346034098576054254033019325883611369} a^{7} - \frac{32188134336741400512689315269699505}{3346034098576054254033019325883611369} a^{6} + \frac{383642770440080470370894032497828684}{3346034098576054254033019325883611369} a^{5} + \frac{1627534852880246054387512407404175781}{3346034098576054254033019325883611369} a^{4} - \frac{459743646474125121110268293159305887}{3346034098576054254033019325883611369} a^{3} - \frac{1667087594496329591749280462858440096}{3346034098576054254033019325883611369} a^{2} + \frac{1414941319207494369115327121466340626}{3346034098576054254033019325883611369} a - \frac{1393256739307010201598521600068841361}{3346034098576054254033019325883611369}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15569030.0092 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.5.24217.1, 10.8.97939335863.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 167 | Data not computed | ||||||
| 397 | Data not computed | ||||||