Properties

Label 20.8.58343029654...2368.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{10}\cdot 19^{10}\cdot 43^{11}$
Root discriminant $48.79$
Ramified primes $2, 19, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T423

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9025, -48735, 7239, 88692, -23582, -61608, -3411, 48318, 3675, -36967, 11704, 12715, -8255, -1376, 2154, -183, -290, 80, 12, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 12*x^18 + 80*x^17 - 290*x^16 - 183*x^15 + 2154*x^14 - 1376*x^13 - 8255*x^12 + 12715*x^11 + 11704*x^10 - 36967*x^9 + 3675*x^8 + 48318*x^7 - 3411*x^6 - 61608*x^5 - 23582*x^4 + 88692*x^3 + 7239*x^2 - 48735*x + 9025)
 
gp: K = bnfinit(x^20 - 8*x^19 + 12*x^18 + 80*x^17 - 290*x^16 - 183*x^15 + 2154*x^14 - 1376*x^13 - 8255*x^12 + 12715*x^11 + 11704*x^10 - 36967*x^9 + 3675*x^8 + 48318*x^7 - 3411*x^6 - 61608*x^5 - 23582*x^4 + 88692*x^3 + 7239*x^2 - 48735*x + 9025, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 12 x^{18} + 80 x^{17} - 290 x^{16} - 183 x^{15} + 2154 x^{14} - 1376 x^{13} - 8255 x^{12} + 12715 x^{11} + 11704 x^{10} - 36967 x^{9} + 3675 x^{8} + 48318 x^{7} - 3411 x^{6} - 61608 x^{5} - 23582 x^{4} + 88692 x^{3} + 7239 x^{2} - 48735 x + 9025 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5834302965409512291058019417402368=2^{10}\cdot 19^{10}\cdot 43^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{3}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{1}{10} a^{2} - \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{260} a^{17} - \frac{9}{260} a^{16} + \frac{51}{130} a^{15} + \frac{23}{130} a^{14} - \frac{79}{260} a^{13} - \frac{2}{5} a^{12} - \frac{83}{260} a^{11} - \frac{22}{65} a^{10} - \frac{61}{130} a^{9} - \frac{7}{26} a^{8} - \frac{1}{13} a^{7} + \frac{81}{260} a^{6} + \frac{14}{65} a^{5} + \frac{7}{20} a^{4} + \frac{123}{260} a^{3} + \frac{12}{65} a^{2} - \frac{27}{65} a + \frac{7}{52}$, $\frac{1}{21508760} a^{18} + \frac{1489}{827260} a^{17} - \frac{5517}{21508760} a^{16} - \frac{1437767}{5377190} a^{15} + \frac{1691835}{4301752} a^{14} - \frac{9961389}{21508760} a^{13} + \frac{769083}{3072680} a^{12} + \frac{2023335}{4301752} a^{11} + \frac{2703439}{10754380} a^{10} + \frac{1331587}{2688595} a^{9} - \frac{2137}{43540} a^{8} + \frac{9622709}{21508760} a^{7} - \frac{2260669}{21508760} a^{6} + \frac{931023}{4301752} a^{5} - \frac{1488453}{5377190} a^{4} + \frac{8066953}{21508760} a^{3} + \frac{916638}{2688595} a^{2} - \frac{258347}{1132040} a - \frac{19301}{226408}$, $\frac{1}{1125566756730229891509498911681200} a^{19} + \frac{11224160666074156447728723}{1125566756730229891509498911681200} a^{18} - \frac{2711860632325300552957859095}{3463282328400707358490765882096} a^{17} - \frac{5448768150469136276298698585933}{225113351346045978301899782336240} a^{16} + \frac{83820535104523692243074429516759}{225113351346045978301899782336240} a^{15} + \frac{14721058118051319687463170550123}{80397625480730706536392779405800} a^{14} + \frac{39010018427459781485289164464557}{140695844591278736438687363960150} a^{13} + \frac{2367357890442364917701388609173}{28139168918255747287737472792030} a^{12} + \frac{12769236468487432869854105424197}{225113351346045978301899782336240} a^{11} + \frac{11214084096678144356049120733339}{112556675673022989150949891168120} a^{10} - \frac{164078499871507892680563090276143}{562783378365114945754749455840600} a^{9} + \frac{385106545728159995477246322723487}{1125566756730229891509498911681200} a^{8} + \frac{1004440207658486040127555819171}{10049703185091338317049097425725} a^{7} + \frac{3805816017742593477643407374391}{22511335134604597830189978233624} a^{6} - \frac{134082478661567281281363283687801}{1125566756730229891509498911681200} a^{5} - \frac{193361177743100533538838655046219}{1125566756730229891509498911681200} a^{4} + \frac{6741152248975157750840221134883}{13561045261809998692885529056400} a^{3} - \frac{6623822065727762720577772137613}{86582058210017683962269147052400} a^{2} - \frac{1417074744313473597487530438553}{2962017780869026030288155030740} a - \frac{314680462233888802340057305417}{2369614224695220824230524024592}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3648112275.37 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T423:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 160 conjugacy class representatives for t20n423 are not computed
Character table for t20n423 is not computed

Intermediate fields

\(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.12$x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$43$43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.4.3.1$x^{4} + 387$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$