Properties

Label 20.8.57722337794...4089.7
Degree $20$
Signature $[8, 6]$
Discriminant $11^{16}\cdot 23^{4}\cdot 67^{2}$
Root discriminant $19.41$
Ramified primes $11, 23, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T341

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 28, -305, -588, 77, 539, 258, -40, -184, -51, 172, 113, -65, -65, -41, 11, 11, 2, -2, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 2*x^18 + 2*x^17 + 11*x^16 + 11*x^15 - 41*x^14 - 65*x^13 - 65*x^12 + 113*x^11 + 172*x^10 - 51*x^9 - 184*x^8 - 40*x^7 + 258*x^6 + 539*x^5 + 77*x^4 - 588*x^3 - 305*x^2 + 28*x + 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - 2*x^18 + 2*x^17 + 11*x^16 + 11*x^15 - 41*x^14 - 65*x^13 - 65*x^12 + 113*x^11 + 172*x^10 - 51*x^9 - 184*x^8 - 40*x^7 + 258*x^6 + 539*x^5 + 77*x^4 - 588*x^3 - 305*x^2 + 28*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - 2 x^{18} + 2 x^{17} + 11 x^{16} + 11 x^{15} - 41 x^{14} - 65 x^{13} - 65 x^{12} + 113 x^{11} + 172 x^{10} - 51 x^{9} - 184 x^{8} - 40 x^{7} + 258 x^{6} + 539 x^{5} + 77 x^{4} - 588 x^{3} - 305 x^{2} + 28 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(57722337794481266110634089=11^{16}\cdot 23^{4}\cdot 67^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{19608919074538319012380134869} a^{19} - \frac{903756987710937303067662572}{19608919074538319012380134869} a^{18} + \frac{547059955478427125993667171}{19608919074538319012380134869} a^{17} - \frac{8003700362804871117321331855}{19608919074538319012380134869} a^{16} + \frac{2198991237134200618708985443}{19608919074538319012380134869} a^{15} + \frac{1378544680365158353302273185}{19608919074538319012380134869} a^{14} - \frac{1567630065405017730961034328}{19608919074538319012380134869} a^{13} - \frac{3191355119701728286071760515}{19608919074538319012380134869} a^{12} - \frac{5796882688845866394644027708}{19608919074538319012380134869} a^{11} - \frac{1462360289366211999461546988}{19608919074538319012380134869} a^{10} - \frac{4634571818268544151292902063}{19608919074538319012380134869} a^{9} + \frac{6598401859677657707369428053}{19608919074538319012380134869} a^{8} - \frac{8834047399200886801449199681}{19608919074538319012380134869} a^{7} - \frac{1959108201413651878419748714}{19608919074538319012380134869} a^{6} - \frac{3080831508068428710859683857}{19608919074538319012380134869} a^{5} + \frac{8485001068771366255043579885}{19608919074538319012380134869} a^{4} - \frac{3148984752296068397861359210}{19608919074538319012380134869} a^{3} - \frac{1216091248042005909088368884}{19608919074538319012380134869} a^{2} + \frac{4433267706379050794775075529}{19608919074538319012380134869} a - \frac{5414341378615656626036580049}{19608919074538319012380134869}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 160162.234197 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T341:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 224 conjugacy class representatives for t20n341 are not computed
Character table for t20n341 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.8.7597521819283.3, 10.6.330327035621.3, 10.4.4930254263.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$67$$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.4.2.1$x^{4} + 1541 x^{2} + 646416$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$