Normalized defining polynomial
\( x^{20} - 32 x^{18} + 87 x^{16} + 3052 x^{14} - 19169 x^{12} + 5369 x^{10} + 73671 x^{8} - 197054 x^{6} + 158522 x^{4} - 94471 x^{2} + 28561 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(571875791767467549011055076097130496=2^{20}\cdot 13^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{6}{13} a^{10} - \frac{4}{13} a^{8} - \frac{3}{13} a^{6} + \frac{6}{13} a^{4}$, $\frac{1}{13} a^{13} - \frac{6}{13} a^{11} - \frac{4}{13} a^{9} - \frac{3}{13} a^{7} + \frac{6}{13} a^{5}$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{10} - \frac{1}{13} a^{8} + \frac{1}{13} a^{6} - \frac{3}{13} a^{4}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{11} - \frac{1}{13} a^{9} + \frac{1}{13} a^{7} - \frac{3}{13} a^{5}$, $\frac{1}{169} a^{16} - \frac{6}{169} a^{14} - \frac{4}{169} a^{12} + \frac{23}{169} a^{10} - \frac{72}{169} a^{8} - \frac{6}{13} a^{6} + \frac{3}{13} a^{4}$, $\frac{1}{169} a^{17} - \frac{6}{169} a^{15} - \frac{4}{169} a^{13} + \frac{23}{169} a^{11} - \frac{72}{169} a^{9} - \frac{6}{13} a^{7} + \frac{3}{13} a^{5}$, $\frac{1}{2994189368195457184591137} a^{18} - \frac{678040889150834146606}{2994189368195457184591137} a^{16} + \frac{32933190779304783815675}{2994189368195457184591137} a^{14} - \frac{10881340040453412892662}{998063122731819061530379} a^{12} - \frac{1102188586992262990877378}{2994189368195457184591137} a^{10} + \frac{30315314069087818156082}{76774086363986081656183} a^{8} + \frac{7910097689954458612917}{76774086363986081656183} a^{6} + \frac{7766944607773538959099}{17717096853227557305273} a^{4} + \frac{2824213792700355988080}{5905698951075852435091} a^{2} + \frac{551051823606734691761}{1362853604094427485021}$, $\frac{1}{2994189368195457184591137} a^{19} - \frac{678040889150834146606}{2994189368195457184591137} a^{17} + \frac{32933190779304783815675}{2994189368195457184591137} a^{15} - \frac{10881340040453412892662}{998063122731819061530379} a^{13} - \frac{1102188586992262990877378}{2994189368195457184591137} a^{11} + \frac{30315314069087818156082}{76774086363986081656183} a^{9} + \frac{7910097689954458612917}{76774086363986081656183} a^{7} + \frac{7766944607773538959099}{17717096853227557305273} a^{5} + \frac{2824213792700355988080}{5905698951075852435091} a^{3} + \frac{551051823606734691761}{1362853604094427485021} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27530933989.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.4369826510569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||