Normalized defining polynomial
\( x^{20} - 5 x^{19} - 8 x^{18} + 129 x^{17} - 336 x^{16} - 102 x^{15} + 2289 x^{14} - 7155 x^{13} + 19266 x^{12} - 40689 x^{11} + 46980 x^{10} - 10997 x^{9} - 75013 x^{8} + 322775 x^{7} - 784606 x^{6} + 1094110 x^{5} - 1203644 x^{4} + 1240682 x^{3} - 401880 x^{2} - 527389 x + 246283 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55822697757846705877082132662901=29^{7}\cdot 61^{4}\cdot 97^{2}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{31} a^{18} + \frac{14}{31} a^{17} - \frac{4}{31} a^{16} + \frac{12}{31} a^{15} + \frac{10}{31} a^{14} + \frac{13}{31} a^{13} + \frac{9}{31} a^{12} - \frac{5}{31} a^{11} + \frac{11}{31} a^{10} + \frac{14}{31} a^{9} + \frac{3}{31} a^{8} - \frac{7}{31} a^{7} - \frac{13}{31} a^{6} + \frac{9}{31} a^{5} - \frac{15}{31} a^{4} - \frac{12}{31} a^{3} + \frac{6}{31} a^{2} + \frac{3}{31} a + \frac{8}{31}$, $\frac{1}{29351272080826015718600853514816954508826506881933999057} a^{19} - \frac{5186216326109164326707522590581872820984470156420850}{946815228413742442535511403703772726091177641352709647} a^{18} - \frac{5617017361915019218986619882853335398993817805808982025}{29351272080826015718600853514816954508826506881933999057} a^{17} - \frac{13475957012271358053767217780075965441770049547270797558}{29351272080826015718600853514816954508826506881933999057} a^{16} - \frac{6186086708744961754124518839496900148031309191415090547}{29351272080826015718600853514816954508826506881933999057} a^{15} + \frac{3027838294009829681849908877444535216137176792111257141}{29351272080826015718600853514816954508826506881933999057} a^{14} + \frac{3435955456172028278396732713233908477837060334392074118}{29351272080826015718600853514816954508826506881933999057} a^{13} + \frac{14240639065417647702471589002990573500902941389670716836}{29351272080826015718600853514816954508826506881933999057} a^{12} + \frac{2620692424849940167840709712976879630719788515970115073}{29351272080826015718600853514816954508826506881933999057} a^{11} - \frac{9312755500098499783146485581659270877433064710026128295}{29351272080826015718600853514816954508826506881933999057} a^{10} + \frac{12526246914252391582700432060820684036901515642297137789}{29351272080826015718600853514816954508826506881933999057} a^{9} + \frac{12343864043264930312313760235171881445537556541282943594}{29351272080826015718600853514816954508826506881933999057} a^{8} - \frac{6588380194142903181365642470202885920586561505249989226}{29351272080826015718600853514816954508826506881933999057} a^{7} - \frac{3152444919506423068060718686898644729826086239177588269}{29351272080826015718600853514816954508826506881933999057} a^{6} - \frac{11171347236371110325515304138579823758522455091137792132}{29351272080826015718600853514816954508826506881933999057} a^{5} + \frac{2470063705687266355169369075429383860341780147933377742}{29351272080826015718600853514816954508826506881933999057} a^{4} - \frac{8970774694331607110074298048347685349034972731455999503}{29351272080826015718600853514816954508826506881933999057} a^{3} + \frac{11309140519115543897145171985257663000035130865430772160}{29351272080826015718600853514816954508826506881933999057} a^{2} - \frac{4445513085574137723595361782739183057789180823073623304}{29351272080826015718600853514816954508826506881933999057} a + \frac{10139500411471646403187836136301389227960543144268760905}{29351272080826015718600853514816954508826506881933999057}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181758500.846 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.17007429581.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||
| 397 | Data not computed | ||||||