Normalized defining polynomial
\( x^{20} - 7 x^{19} + 17 x^{18} + x^{17} - 111 x^{16} + 320 x^{15} - 454 x^{14} + 195 x^{13} + 632 x^{12} - 1796 x^{11} + 2735 x^{10} - 2895 x^{9} + 2133 x^{8} - 1008 x^{7} + 440 x^{6} - 470 x^{5} + 322 x^{4} - 4 x^{3} - 61 x^{2} + 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(551562761916888386281060081=11^{16}\cdot 331^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2569028650946696750041} a^{19} - \frac{331145655549638676231}{2569028650946696750041} a^{18} + \frac{806260092761144288603}{2569028650946696750041} a^{17} + \frac{397489429265494375186}{2569028650946696750041} a^{16} - \frac{645736714796202458205}{2569028650946696750041} a^{15} - \frac{234385093982827691314}{2569028650946696750041} a^{14} - \frac{724140785890466727922}{2569028650946696750041} a^{13} + \frac{146930285667210132880}{2569028650946696750041} a^{12} - \frac{1247107265211032390642}{2569028650946696750041} a^{11} + \frac{127521088041784358073}{2569028650946696750041} a^{10} + \frac{1097869636241014197706}{2569028650946696750041} a^{9} + \frac{563478868908600336733}{2569028650946696750041} a^{8} + \frac{666022063753520199562}{2569028650946696750041} a^{7} + \frac{244787654378157086440}{2569028650946696750041} a^{6} - \frac{1095808881534293889616}{2569028650946696750041} a^{5} + \frac{375131915820712187398}{2569028650946696750041} a^{4} + \frac{936815999470464729626}{2569028650946696750041} a^{3} - \frac{910410493100127396791}{2569028650946696750041} a^{2} - \frac{574495928195519227477}{2569028650946696750041} a - \frac{346245887644173131685}{2569028650946696750041}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 507963.53503 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 28 conjugacy class representatives for t20n254 |
| Character table for t20n254 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.70952789611.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 331 | Data not computed | ||||||