Normalized defining polynomial
\( x^{20} - 2 x^{19} - 17 x^{18} + 14 x^{17} + 189 x^{16} - 64 x^{15} - 1444 x^{14} + 336 x^{13} + 5827 x^{12} + 554 x^{11} - 8641 x^{10} + 2940 x^{9} - 1065 x^{8} + 4264 x^{7} + 11828 x^{6} - 11602 x^{5} - 5705 x^{4} + 2250 x^{3} - 3297 x^{2} + 1248 x + 1733 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5171468217146897008836483283484672=2^{16}\cdot 13^{16}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{20} a^{16} + \frac{1}{10} a^{15} + \frac{1}{5} a^{14} + \frac{1}{10} a^{13} + \frac{1}{5} a^{11} + \frac{3}{10} a^{9} - \frac{1}{4} a^{8} + \frac{2}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{3}{10} a - \frac{7}{20}$, $\frac{1}{20} a^{17} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} + \frac{3}{20} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{1}{2} a^{2} + \frac{1}{20} a - \frac{3}{10}$, $\frac{1}{100} a^{18} - \frac{1}{100} a^{16} + \frac{3}{25} a^{15} + \frac{11}{50} a^{14} + \frac{11}{50} a^{13} + \frac{1}{50} a^{12} - \frac{2}{25} a^{11} - \frac{7}{100} a^{10} - \frac{19}{50} a^{9} + \frac{21}{100} a^{8} - \frac{13}{50} a^{7} - \frac{3}{50} a^{6} - \frac{7}{50} a^{5} + \frac{1}{25} a^{4} + \frac{8}{25} a^{3} - \frac{27}{100} a^{2} - \frac{21}{50} a - \frac{13}{100}$, $\frac{1}{45536053886790353524518951295398185284900} a^{19} + \frac{43348302671181154725123118482795719889}{45536053886790353524518951295398185284900} a^{18} - \frac{14329991300411283417765219993391949229}{11384013471697588381129737823849546321225} a^{17} + \frac{890978010638341044387672105833282781073}{45536053886790353524518951295398185284900} a^{16} - \frac{23707172305914605804918785691457733021}{98991421493022507661997720207387359315} a^{15} + \frac{620101729841770784446312222706347973627}{4553605388679035352451895129539818528490} a^{14} + \frac{5238358104756196727890545565345145302}{98991421493022507661997720207387359315} a^{13} - \frac{214112071072834528361441131548846685222}{2276802694339517676225947564769909264245} a^{12} + \frac{10909349284090314746440313428240999757701}{45536053886790353524518951295398185284900} a^{11} - \frac{7767854949240991369322838512947922822551}{45536053886790353524518951295398185284900} a^{10} + \frac{587932528471413362459131194008973641847}{22768026943395176762259475647699092642450} a^{9} - \frac{17119136283874071443794124662434650828977}{45536053886790353524518951295398185284900} a^{8} - \frac{1328162769338667145042459662101842074251}{4553605388679035352451895129539818528490} a^{7} + \frac{1897639757776343413900456875792886580793}{11384013471697588381129737823849546321225} a^{6} - \frac{84740869821580566758406086190346630203}{186623171667173580018520292194254857725} a^{5} - \frac{2483144486774779067709738855282281566373}{11384013471697588381129737823849546321225} a^{4} - \frac{14939289234793651144738351002490672047309}{45536053886790353524518951295398185284900} a^{3} - \frac{558497633362690161787659926576050457919}{9107210777358070704903790259079637056980} a^{2} + \frac{4675994564887614509737343615511914318767}{22768026943395176762259475647699092642450} a + \frac{12618020811198580955195602526019908644933}{45536053886790353524518951295398185284900}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4764878974.43 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.12.11.6 | $x^{12} - 13312$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.5.2 | $x^{6} + 51$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |