Normalized defining polynomial
\( x^{20} - 4 x^{19} + 103 x^{17} - 320 x^{16} - 53 x^{15} + 1747 x^{14} - 4549 x^{13} + 2390 x^{12} - 21 x^{11} - 4249 x^{10} - 3616 x^{9} - 4582 x^{8} - 944 x^{7} + 11317 x^{6} + 11940 x^{5} + 7183 x^{4} + 3942 x^{3} + 1314 x^{2} + 201 x + 11 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4760702246767028473252701170188738898344243} a^{19} - \frac{1511005348930519099969757236926414574733108}{4760702246767028473252701170188738898344243} a^{18} - \frac{170875653589434360766086406691474516461050}{4760702246767028473252701170188738898344243} a^{17} - \frac{1016383517722582804698332895047676367152282}{4760702246767028473252701170188738898344243} a^{16} - \frac{1620153191349148096262952686021778816520260}{4760702246767028473252701170188738898344243} a^{15} + \frac{1083248101530690129440509274212735095279893}{4760702246767028473252701170188738898344243} a^{14} + \frac{1922900579226974141200425083828930532933090}{4760702246767028473252701170188738898344243} a^{13} + \frac{2223676869568475942062096680793483296004963}{4760702246767028473252701170188738898344243} a^{12} + \frac{911631233654150800173196534374070602298901}{4760702246767028473252701170188738898344243} a^{11} + \frac{2145110726675744832093394509926653205840611}{4760702246767028473252701170188738898344243} a^{10} - \frac{2312734558343931798569296331681621873277486}{4760702246767028473252701170188738898344243} a^{9} + \frac{1906775805785792696813224313261599390758033}{4760702246767028473252701170188738898344243} a^{8} + \frac{2276725427203710301376135564223204743704715}{4760702246767028473252701170188738898344243} a^{7} - \frac{1437409255307038005968390491491771719053676}{4760702246767028473252701170188738898344243} a^{6} - \frac{1841578478827157687762361636823781956606032}{4760702246767028473252701170188738898344243} a^{5} - \frac{411305999439322069165381961079304327394147}{4760702246767028473252701170188738898344243} a^{4} + \frac{542089229649351117894847626578626453839946}{4760702246767028473252701170188738898344243} a^{3} + \frac{918697458129650854152278905688210498545616}{4760702246767028473252701170188738898344243} a^{2} - \frac{1472564565386180093974830822814317112967192}{4760702246767028473252701170188738898344243} a + \frac{481383040418327354885156929772376680208628}{4760702246767028473252701170188738898344243}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1061675848.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||