Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 80 x^{17} - 105 x^{16} + 627 x^{15} - 1925 x^{14} - 444 x^{13} + 7292 x^{12} - 6262 x^{11} + 983 x^{10} + 27046 x^{9} + 5062 x^{8} + 27492 x^{7} + 29580 x^{6} - 17672 x^{5} + 3728 x^{4} - 13472 x^{3} - 12784 x^{2} + 8480 x - 800 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} + \frac{3}{8} a^{11} + \frac{3}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{14} + \frac{3}{16} a^{13} + \frac{3}{16} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{3}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{40349131454816350684558355008468812386811715760} a^{19} + \frac{309752150128971166921279367730151455892788061}{20174565727408175342279177504234406193405857880} a^{18} - \frac{52493296486502785908705079385519436907046259}{4034913145481635068455835500846881238681171576} a^{17} + \frac{99834223181662231271361424288408871348689961}{4034913145481635068455835500846881238681171576} a^{16} + \frac{234842010427739316112201871297095988055199727}{8069826290963270136911671001693762477362343152} a^{15} - \frac{497950069513460176112644536077425630418088463}{40349131454816350684558355008468812386811715760} a^{14} - \frac{679621850582619043787834282103187689127069277}{8069826290963270136911671001693762477362343152} a^{13} - \frac{348548664369447411710804919238478549904631897}{20174565727408175342279177504234406193405857880} a^{12} + \frac{1116770821515181201846416067811571804132304803}{10087282863704087671139588752117203096702928940} a^{11} - \frac{1318163730103121551544077075469856255923145923}{10087282863704087671139588752117203096702928940} a^{10} - \frac{19686515622913213156360063269948100805995670177}{40349131454816350684558355008468812386811715760} a^{9} + \frac{2263636188511005136099059716117697095576963767}{5043641431852043835569794376058601548351464470} a^{8} - \frac{4047307891356338650508689315994285862944561687}{10087282863704087671139588752117203096702928940} a^{7} - \frac{192857946226345451645558813192485073929318339}{20174565727408175342279177504234406193405857880} a^{6} + \frac{497123876777179222077867275670224969953490225}{1008728286370408767113958875211720309670292894} a^{5} - \frac{4153283825568542927905468875617443123439797173}{10087282863704087671139588752117203096702928940} a^{4} + \frac{118405079186309516626611376464296510203174978}{2521820715926021917784897188029300774175732235} a^{3} - \frac{2053301293059464803046869525160124079090207789}{5043641431852043835569794376058601548351464470} a^{2} - \frac{878530961924048244353541673231506327643231154}{2521820715926021917784897188029300774175732235} a - \frac{39155512945876917744791512646878872125413586}{504364143185204383556979437605860154835146447}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4245227931.01 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.8.0.1 | $x^{8} - x + 17$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 397 | Data not computed | ||||||