Normalized defining polynomial
\( x^{20} - 3 x^{19} - 15 x^{18} + 55 x^{17} - 54 x^{16} + 55 x^{15} + 359 x^{14} - 490 x^{13} - 1140 x^{12} - 8644 x^{11} + 28564 x^{10} + 10333 x^{9} - 152068 x^{8} + 285138 x^{7} - 58962 x^{6} - 670645 x^{5} + 1017354 x^{4} - 383753 x^{3} - 171196 x^{2} + 97711 x + 7585 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} - \frac{2}{17} a^{17} + \frac{4}{17} a^{16} - \frac{4}{17} a^{14} + \frac{3}{17} a^{12} + \frac{6}{17} a^{11} - \frac{1}{17} a^{9} + \frac{3}{17} a^{8} - \frac{4}{17} a^{7} + \frac{5}{17} a^{6} + \frac{3}{17} a^{5} + \frac{6}{17} a^{2} - \frac{6}{17} a - \frac{5}{17}$, $\frac{1}{14276039547080116948116025487319216870295257123502964635} a^{19} - \frac{32478491666414048361504703549519806892690724806001331}{14276039547080116948116025487319216870295257123502964635} a^{18} + \frac{1963802466832672085587399928549469171031301733908696268}{14276039547080116948116025487319216870295257123502964635} a^{17} - \frac{6728055731965049009608760941120699357325259236874959544}{14276039547080116948116025487319216870295257123502964635} a^{16} + \frac{833583458338045617437442544458099461198048427554361803}{14276039547080116948116025487319216870295257123502964635} a^{15} - \frac{4495175888590372643172331423424582658116840426168692969}{14276039547080116948116025487319216870295257123502964635} a^{14} + \frac{240594150755925767075897447538038814749398525493561626}{14276039547080116948116025487319216870295257123502964635} a^{13} - \frac{5839662746844341031249085169422725861113082118935051493}{14276039547080116948116025487319216870295257123502964635} a^{12} - \frac{891937628655372966730126456577162910378854142435448531}{14276039547080116948116025487319216870295257123502964635} a^{11} + \frac{5895734485314211270433000340114995162139081087794655764}{14276039547080116948116025487319216870295257123502964635} a^{10} - \frac{4596991454424738077083166674318613543875800654023776283}{14276039547080116948116025487319216870295257123502964635} a^{9} - \frac{1937859828374154350398965012239444602231277119275751418}{14276039547080116948116025487319216870295257123502964635} a^{8} - \frac{2948860817558913745336717196068639735909115349595266239}{14276039547080116948116025487319216870295257123502964635} a^{7} - \frac{496956149843395896161535698434564790057749554167615965}{2855207909416023389623205097463843374059051424700592927} a^{6} - \frac{1061940597106582315712884212488237082348089266068196192}{14276039547080116948116025487319216870295257123502964635} a^{5} - \frac{237042928057433403910200186459781838684852472825657522}{839767032181183349889177969842306874723250419029586155} a^{4} - \frac{5719832346725543285945289548431898567180701203788245474}{14276039547080116948116025487319216870295257123502964635} a^{3} + \frac{5750188623574367473855823874548002637131655608218847639}{14276039547080116948116025487319216870295257123502964635} a^{2} - \frac{774418376864543090140268656271504612234336134297433918}{14276039547080116948116025487319216870295257123502964635} a - \frac{357804772653608367583056123042505268343987812096745592}{2855207909416023389623205097463843374059051424700592927}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4654612808.46 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||