Normalized defining polynomial
\( x^{20} - 5 x^{19} - 5 x^{18} + 95 x^{17} - 438 x^{16} + 1580 x^{15} - 4706 x^{14} + 11669 x^{13} - 23898 x^{12} + 37466 x^{11} - 36688 x^{10} - 822 x^{9} + 74202 x^{8} - 130424 x^{7} + 102259 x^{6} + 1459 x^{5} - 85166 x^{4} + 77059 x^{3} - 23761 x^{2} + 615 x - 367 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{824667508281544123354286926657155693831590185} a^{19} - \frac{268865084936789146467904869032668993268400484}{824667508281544123354286926657155693831590185} a^{18} - \frac{176324744260437227960632245599976533242474509}{824667508281544123354286926657155693831590185} a^{17} - \frac{254994798044120582038492001680383588399213289}{824667508281544123354286926657155693831590185} a^{16} + \frac{125449990074162648455334169810485594624637018}{824667508281544123354286926657155693831590185} a^{15} - \frac{389763177234734907743710827819784954876382212}{824667508281544123354286926657155693831590185} a^{14} - \frac{257975419945012811738545057668299309727943968}{824667508281544123354286926657155693831590185} a^{13} + \frac{5149936827248654675296883512948676065331991}{824667508281544123354286926657155693831590185} a^{12} - \frac{23416196286794659179372685440600704690889747}{824667508281544123354286926657155693831590185} a^{11} - \frac{60441975360531035350249295236906835713869556}{824667508281544123354286926657155693831590185} a^{10} + \frac{385437355791703839666538699078517622078215161}{824667508281544123354286926657155693831590185} a^{9} - \frac{63238709220702857576937637544952647194097691}{824667508281544123354286926657155693831590185} a^{8} + \frac{115035105650841199039637361618641713987275541}{824667508281544123354286926657155693831590185} a^{7} - \frac{166859013025001973278069365152688892176199053}{824667508281544123354286926657155693831590185} a^{6} - \frac{32294573727127640313220192261331469066686929}{824667508281544123354286926657155693831590185} a^{5} + \frac{73029541656585197257103929162924731056986784}{164933501656308824670857385331431138766318037} a^{4} + \frac{357202960216116332636772116953704730430616819}{824667508281544123354286926657155693831590185} a^{3} - \frac{309098190422731478192060698557010422433931072}{824667508281544123354286926657155693831590185} a^{2} + \frac{175363764858198747445230158974080772722944257}{824667508281544123354286926657155693831590185} a + \frac{225483255321688991022827790451082644440294952}{824667508281544123354286926657155693831590185}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4266381851.15 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||