Normalized defining polynomial
\( x^{20} - 9 x^{19} + 21 x^{18} - 13 x^{17} + 65 x^{16} + 142 x^{15} - 2365 x^{14} + 6769 x^{13} - 9974 x^{12} + 15945 x^{11} - 17027 x^{10} - 35897 x^{9} + 135513 x^{8} - 86153 x^{7} - 230658 x^{6} + 216722 x^{5} + 245643 x^{4} - 111548 x^{3} - 144515 x^{2} - 25950 x + 4625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} + \frac{1}{5} a^{16} + \frac{2}{5} a^{15} + \frac{2}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{3792385091516594964324006584577270334048690044982698425} a^{19} - \frac{267324888567751852898701724203151286987734209142651569}{3792385091516594964324006584577270334048690044982698425} a^{18} - \frac{194110612026123481519141005271622446613779731484545489}{3792385091516594964324006584577270334048690044982698425} a^{17} + \frac{782382409806366555168297344040390591003924320187172}{92497197354063291812780648404323666684114391341041425} a^{16} + \frac{145640527551330718565069551867149207684590836559044789}{758477018303318992864801316915454066809738008996539685} a^{15} + \frac{823034564066920116143476197923027653528891510694879817}{3792385091516594964324006584577270334048690044982698425} a^{14} - \frac{13454688198453917524306789429589205154149593893164252}{758477018303318992864801316915454066809738008996539685} a^{13} - \frac{153036327855225657611952872103231693025404291473185581}{3792385091516594964324006584577270334048690044982698425} a^{12} - \frac{62205875747342836399761750209804341223795999027666289}{3792385091516594964324006584577270334048690044982698425} a^{11} + \frac{260164674893444005081035871170917555547192453877676687}{758477018303318992864801316915454066809738008996539685} a^{10} + \frac{643383400979910209640706875560495140170103946491679373}{3792385091516594964324006584577270334048690044982698425} a^{9} - \frac{1663496157230478694174900249541688856131970226714023277}{3792385091516594964324006584577270334048690044982698425} a^{8} + \frac{1120386884065550980237003321331569718281818692547912133}{3792385091516594964324006584577270334048690044982698425} a^{7} + \frac{1273546668458434383590812847171900147110084986244617017}{3792385091516594964324006584577270334048690044982698425} a^{6} + \frac{1837412752280289846185864442007170003777985372197241847}{3792385091516594964324006584577270334048690044982698425} a^{5} + \frac{952515699204906069755715486085414445676689965482174327}{3792385091516594964324006584577270334048690044982698425} a^{4} + \frac{263685126843794227903155931625609215567741886194845323}{3792385091516594964324006584577270334048690044982698425} a^{3} - \frac{1109738720705901833944415423905592696839566058499747978}{3792385091516594964324006584577270334048690044982698425} a^{2} - \frac{342041501509668747875688842538721850499236457490280447}{758477018303318992864801316915454066809738008996539685} a - \frac{75208780094955715771875430642222295063326541631852518}{151695403660663798572960263383090813361947601799307937}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5249919996.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 61.8.0.1 | $x^{8} - x + 17$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 397 | Data not computed | ||||||