Normalized defining polynomial
\( x^{20} + 4 x^{18} - 33 x^{17} + 24 x^{16} - 339 x^{15} - 59 x^{14} - 1397 x^{13} + 1772 x^{12} + \cdots + 6131 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[8, 6]$ |
| |
| Discriminant: |
\(5001984585680627954608248429847552\)
\(\medspace = 2^{10}\cdot 61^{7}\cdot 397^{7}\)
|
| |
| Root discriminant: | \(48.41\) |
| |
| Galois root discriminant: | $2^{15/8}61^{3/4}397^{1/2}\approx 1595.232068334258$ | ||
| Ramified primes: |
\(2\), \(61\), \(397\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{24217}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{12\cdots 79}a^{19}+\frac{27\cdots 40}{12\cdots 79}a^{18}+\frac{55\cdots 80}{12\cdots 79}a^{17}-\frac{14\cdots 93}{12\cdots 79}a^{16}-\frac{32\cdots 93}{12\cdots 79}a^{15}+\frac{65\cdots 28}{12\cdots 79}a^{14}-\frac{16\cdots 98}{12\cdots 79}a^{13}-\frac{76\cdots 13}{12\cdots 79}a^{12}+\frac{22\cdots 38}{12\cdots 79}a^{11}-\frac{61\cdots 04}{12\cdots 79}a^{10}-\frac{35\cdots 85}{12\cdots 79}a^{9}+\frac{51\cdots 77}{12\cdots 79}a^{8}+\frac{26\cdots 85}{12\cdots 79}a^{7}-\frac{32\cdots 75}{12\cdots 79}a^{6}-\frac{26\cdots 06}{12\cdots 79}a^{5}+\frac{54\cdots 85}{12\cdots 79}a^{4}-\frac{68\cdots 59}{12\cdots 79}a^{3}-\frac{43\cdots 34}{12\cdots 79}a^{2}+\frac{19\cdots 20}{12\cdots 79}a+\frac{37\cdots 86}{12\cdots 79}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{38\cdots 90}{12\cdots 79}a^{19}-\frac{43\cdots 10}{12\cdots 79}a^{18}+\frac{19\cdots 81}{12\cdots 79}a^{17}-\frac{14\cdots 37}{12\cdots 79}a^{16}+\frac{25\cdots 68}{12\cdots 79}a^{15}-\frac{15\cdots 64}{12\cdots 79}a^{14}+\frac{14\cdots 48}{12\cdots 79}a^{13}-\frac{67\cdots 27}{12\cdots 79}a^{12}+\frac{14\cdots 33}{12\cdots 79}a^{11}-\frac{77\cdots 47}{12\cdots 79}a^{10}-\frac{68\cdots 71}{12\cdots 79}a^{9}+\frac{10\cdots 94}{12\cdots 79}a^{8}-\frac{56\cdots 18}{12\cdots 79}a^{7}-\frac{16\cdots 97}{12\cdots 79}a^{6}-\frac{39\cdots 43}{12\cdots 79}a^{5}+\frac{14\cdots 72}{12\cdots 79}a^{4}+\frac{15\cdots 48}{12\cdots 79}a^{3}-\frac{13\cdots 90}{12\cdots 79}a^{2}-\frac{63\cdots 86}{12\cdots 79}a+\frac{36\cdots 69}{12\cdots 79}$, $\frac{38\cdots 90}{12\cdots 79}a^{19}-\frac{43\cdots 10}{12\cdots 79}a^{18}+\frac{19\cdots 81}{12\cdots 79}a^{17}-\frac{14\cdots 37}{12\cdots 79}a^{16}+\frac{25\cdots 68}{12\cdots 79}a^{15}-\frac{15\cdots 64}{12\cdots 79}a^{14}+\frac{14\cdots 48}{12\cdots 79}a^{13}-\frac{67\cdots 27}{12\cdots 79}a^{12}+\frac{14\cdots 33}{12\cdots 79}a^{11}-\frac{77\cdots 47}{12\cdots 79}a^{10}-\frac{68\cdots 71}{12\cdots 79}a^{9}+\frac{10\cdots 94}{12\cdots 79}a^{8}-\frac{56\cdots 18}{12\cdots 79}a^{7}-\frac{16\cdots 97}{12\cdots 79}a^{6}-\frac{39\cdots 43}{12\cdots 79}a^{5}+\frac{14\cdots 72}{12\cdots 79}a^{4}+\frac{15\cdots 48}{12\cdots 79}a^{3}-\frac{13\cdots 90}{12\cdots 79}a^{2}-\frac{63\cdots 86}{12\cdots 79}a+\frac{48\cdots 48}{12\cdots 79}$, $\frac{17\cdots 66}{12\cdots 79}a^{19}-\frac{49\cdots 47}{12\cdots 79}a^{18}+\frac{12\cdots 10}{12\cdots 79}a^{17}-\frac{82\cdots 93}{12\cdots 79}a^{16}+\frac{23\cdots 31}{12\cdots 79}a^{15}-\frac{90\cdots 11}{12\cdots 79}a^{14}+\frac{18\cdots 53}{12\cdots 79}a^{13}-\frac{41\cdots 11}{12\cdots 79}a^{12}+\frac{11\cdots 37}{12\cdots 79}a^{11}-\frac{13\cdots 33}{12\cdots 79}a^{10}+\frac{38\cdots 86}{12\cdots 79}a^{9}+\frac{61\cdots 79}{12\cdots 79}a^{8}-\frac{12\cdots 85}{12\cdots 79}a^{7}-\frac{16\cdots 15}{12\cdots 79}a^{6}+\frac{89\cdots 45}{12\cdots 79}a^{5}+\frac{65\cdots 11}{12\cdots 79}a^{4}+\frac{38\cdots 88}{12\cdots 79}a^{3}-\frac{18\cdots 95}{12\cdots 79}a^{2}+\frac{13\cdots 68}{12\cdots 79}a+\frac{79\cdots 94}{12\cdots 79}$, $\frac{63\cdots 33}{12\cdots 79}a^{19}-\frac{76\cdots 20}{12\cdots 79}a^{18}+\frac{33\cdots 00}{12\cdots 79}a^{17}-\frac{25\cdots 52}{12\cdots 79}a^{16}+\frac{44\cdots 76}{12\cdots 79}a^{15}-\frac{26\cdots 87}{12\cdots 79}a^{14}+\frac{27\cdots 10}{12\cdots 79}a^{13}-\frac{11\cdots 09}{12\cdots 79}a^{12}+\frac{25\cdots 97}{12\cdots 79}a^{11}-\frac{15\cdots 82}{12\cdots 79}a^{10}-\frac{58\cdots 86}{12\cdots 79}a^{9}+\frac{17\cdots 54}{12\cdots 79}a^{8}-\frac{96\cdots 90}{12\cdots 79}a^{7}-\frac{26\cdots 04}{12\cdots 79}a^{6}-\frac{90\cdots 65}{12\cdots 79}a^{5}+\frac{25\cdots 80}{12\cdots 79}a^{4}+\frac{28\cdots 54}{12\cdots 79}a^{3}-\frac{21\cdots 13}{12\cdots 79}a^{2}-\frac{14\cdots 15}{12\cdots 79}a+\frac{59\cdots 64}{12\cdots 79}$, $\frac{10\cdots 09}{12\cdots 79}a^{19}-\frac{10\cdots 88}{12\cdots 79}a^{18}+\frac{52\cdots 46}{12\cdots 79}a^{17}-\frac{39\cdots 94}{12\cdots 79}a^{16}+\frac{65\cdots 12}{12\cdots 79}a^{15}-\frac{42\cdots 11}{12\cdots 79}a^{14}+\frac{36\cdots 10}{12\cdots 79}a^{13}-\frac{18\cdots 35}{12\cdots 79}a^{12}+\frac{37\cdots 54}{12\cdots 79}a^{11}-\frac{18\cdots 37}{12\cdots 79}a^{10}-\frac{14\cdots 17}{12\cdots 79}a^{9}+\frac{29\cdots 72}{12\cdots 79}a^{8}-\frac{11\cdots 19}{12\cdots 79}a^{7}-\frac{44\cdots 20}{12\cdots 79}a^{6}-\frac{21\cdots 87}{12\cdots 79}a^{5}+\frac{31\cdots 32}{12\cdots 79}a^{4}+\frac{46\cdots 19}{12\cdots 79}a^{3}-\frac{24\cdots 18}{12\cdots 79}a^{2}-\frac{16\cdots 68}{12\cdots 79}a+\frac{71\cdots 63}{12\cdots 79}$, $\frac{13\cdots 34}{12\cdots 79}a^{19}-\frac{19\cdots 17}{12\cdots 79}a^{18}+\frac{61\cdots 70}{12\cdots 79}a^{17}-\frac{46\cdots 53}{12\cdots 79}a^{16}+\frac{42\cdots 17}{12\cdots 79}a^{15}-\frac{49\cdots 38}{12\cdots 79}a^{14}+\frac{60\cdots 58}{12\cdots 79}a^{13}-\frac{22\cdots 99}{12\cdots 79}a^{12}+\frac{31\cdots 70}{12\cdots 79}a^{11}+\frac{57\cdots 33}{12\cdots 79}a^{10}-\frac{24\cdots 61}{12\cdots 79}a^{9}+\frac{32\cdots 35}{12\cdots 79}a^{8}+\frac{19\cdots 43}{12\cdots 79}a^{7}-\frac{52\cdots 11}{12\cdots 79}a^{6}-\frac{95\cdots 64}{12\cdots 79}a^{5}-\frac{14\cdots 57}{12\cdots 79}a^{4}+\frac{92\cdots 59}{12\cdots 79}a^{3}+\frac{45\cdots 02}{12\cdots 79}a^{2}-\frac{24\cdots 24}{12\cdots 79}a-\frac{27\cdots 67}{12\cdots 79}$, $\frac{54\cdots 10}{12\cdots 79}a^{19}-\frac{30\cdots 85}{12\cdots 79}a^{18}+\frac{25\cdots 16}{12\cdots 79}a^{17}-\frac{19\cdots 95}{12\cdots 79}a^{16}+\frac{25\cdots 53}{12\cdots 79}a^{15}-\frac{20\cdots 62}{12\cdots 79}a^{14}+\frac{95\cdots 58}{12\cdots 79}a^{13}-\frac{90\cdots 25}{12\cdots 79}a^{12}+\frac{15\cdots 27}{12\cdots 79}a^{11}-\frac{19\cdots 22}{12\cdots 79}a^{10}-\frac{93\cdots 92}{12\cdots 79}a^{9}+\frac{15\cdots 53}{12\cdots 79}a^{8}+\frac{44\cdots 14}{12\cdots 79}a^{7}-\frac{22\cdots 27}{12\cdots 79}a^{6}-\frac{21\cdots 86}{12\cdots 79}a^{5}+\frac{53\cdots 95}{12\cdots 79}a^{4}+\frac{27\cdots 24}{12\cdots 79}a^{3}+\frac{13\cdots 97}{12\cdots 79}a^{2}-\frac{46\cdots 77}{12\cdots 79}a+\frac{87\cdots 90}{12\cdots 79}$, $\frac{42\cdots 85}{12\cdots 79}a^{19}-\frac{46\cdots 72}{12\cdots 79}a^{18}+\frac{21\cdots 29}{12\cdots 79}a^{17}-\frac{16\cdots 25}{12\cdots 79}a^{16}+\frac{27\cdots 96}{12\cdots 79}a^{15}-\frac{17\cdots 00}{12\cdots 79}a^{14}+\frac{16\cdots 92}{12\cdots 79}a^{13}-\frac{75\cdots 61}{12\cdots 79}a^{12}+\frac{16\cdots 40}{12\cdots 79}a^{11}-\frac{91\cdots 67}{12\cdots 79}a^{10}-\frac{13\cdots 93}{12\cdots 79}a^{9}+\frac{11\cdots 44}{12\cdots 79}a^{8}-\frac{44\cdots 38}{12\cdots 79}a^{7}-\frac{19\cdots 45}{12\cdots 79}a^{6}-\frac{93\cdots 62}{12\cdots 79}a^{5}+\frac{15\cdots 85}{12\cdots 79}a^{4}+\frac{18\cdots 22}{12\cdots 79}a^{3}-\frac{87\cdots 97}{12\cdots 79}a^{2}-\frac{94\cdots 21}{12\cdots 79}a+\frac{29\cdots 38}{12\cdots 79}$, $\frac{16\cdots 23}{12\cdots 79}a^{19}-\frac{13\cdots 35}{12\cdots 79}a^{18}+\frac{79\cdots 96}{12\cdots 79}a^{17}-\frac{60\cdots 41}{12\cdots 79}a^{16}+\frac{92\cdots 86}{12\cdots 79}a^{15}-\frac{63\cdots 09}{12\cdots 79}a^{14}+\frac{46\cdots 59}{12\cdots 79}a^{13}-\frac{27\cdots 41}{12\cdots 79}a^{12}+\frac{53\cdots 67}{12\cdots 79}a^{11}-\frac{20\cdots 49}{12\cdots 79}a^{10}-\frac{23\cdots 06}{12\cdots 79}a^{9}+\frac{44\cdots 26}{12\cdots 79}a^{8}-\frac{10\cdots 33}{12\cdots 79}a^{7}-\frac{69\cdots 13}{12\cdots 79}a^{6}-\frac{43\cdots 94}{12\cdots 79}a^{5}+\frac{41\cdots 47}{12\cdots 79}a^{4}+\frac{77\cdots 62}{12\cdots 79}a^{3}-\frac{25\cdots 96}{12\cdots 79}a^{2}-\frac{29\cdots 68}{12\cdots 79}a+\frac{74\cdots 88}{12\cdots 79}$, $\frac{21\cdots 56}{12\cdots 79}a^{19}-\frac{24\cdots 58}{12\cdots 79}a^{18}+\frac{11\cdots 02}{12\cdots 79}a^{17}-\frac{85\cdots 40}{12\cdots 79}a^{16}+\frac{14\cdots 44}{12\cdots 79}a^{15}-\frac{90\cdots 02}{12\cdots 79}a^{14}+\frac{88\cdots 18}{12\cdots 79}a^{13}-\frac{40\cdots 41}{12\cdots 79}a^{12}+\frac{84\cdots 66}{12\cdots 79}a^{11}-\frac{53\cdots 37}{12\cdots 79}a^{10}-\frac{77\cdots 48}{12\cdots 79}a^{9}+\frac{58\cdots 64}{12\cdots 79}a^{8}-\frac{27\cdots 43}{12\cdots 79}a^{7}-\frac{85\cdots 90}{12\cdots 79}a^{6}-\frac{42\cdots 53}{12\cdots 79}a^{5}+\frac{70\cdots 80}{12\cdots 79}a^{4}+\frac{86\cdots 04}{12\cdots 79}a^{3}-\frac{52\cdots 95}{12\cdots 79}a^{2}-\frac{30\cdots 28}{12\cdots 79}a+\frac{11\cdots 18}{12\cdots 79}$, $\frac{78\cdots 88}{12\cdots 79}a^{19}-\frac{49\cdots 10}{12\cdots 79}a^{18}+\frac{34\cdots 52}{12\cdots 79}a^{17}-\frac{28\cdots 53}{12\cdots 79}a^{16}+\frac{36\cdots 11}{12\cdots 79}a^{15}-\frac{29\cdots 91}{12\cdots 79}a^{14}+\frac{13\cdots 28}{12\cdots 79}a^{13}-\frac{11\cdots 99}{12\cdots 79}a^{12}+\frac{21\cdots 07}{12\cdots 79}a^{11}+\frac{14\cdots 32}{12\cdots 79}a^{10}-\frac{27\cdots 49}{12\cdots 79}a^{9}+\frac{22\cdots 76}{12\cdots 79}a^{8}-\frac{71\cdots 45}{12\cdots 79}a^{7}-\frac{41\cdots 21}{12\cdots 79}a^{6}-\frac{22\cdots 43}{12\cdots 79}a^{5}+\frac{23\cdots 95}{12\cdots 79}a^{4}+\frac{45\cdots 94}{12\cdots 79}a^{3}-\frac{13\cdots 70}{12\cdots 79}a^{2}-\frac{24\cdots 85}{12\cdots 79}a+\frac{78\cdots 29}{12\cdots 79}$, $\frac{58\cdots 88}{12\cdots 79}a^{19}-\frac{70\cdots 69}{12\cdots 79}a^{18}+\frac{31\cdots 89}{12\cdots 79}a^{17}-\frac{23\cdots 24}{12\cdots 79}a^{16}+\frac{41\cdots 19}{12\cdots 79}a^{15}-\frac{24\cdots 42}{12\cdots 79}a^{14}+\frac{26\cdots 86}{12\cdots 79}a^{13}-\frac{11\cdots 45}{12\cdots 79}a^{12}+\frac{24\cdots 56}{12\cdots 79}a^{11}-\frac{18\cdots 74}{12\cdots 79}a^{10}+\frac{34\cdots 17}{12\cdots 79}a^{9}+\frac{15\cdots 12}{12\cdots 79}a^{8}-\frac{81\cdots 83}{12\cdots 79}a^{7}-\frac{21\cdots 66}{12\cdots 79}a^{6}-\frac{10\cdots 94}{12\cdots 79}a^{5}+\frac{19\cdots 58}{12\cdots 79}a^{4}+\frac{20\cdots 70}{12\cdots 79}a^{3}-\frac{13\cdots 73}{12\cdots 79}a^{2}-\frac{73\cdots 62}{12\cdots 79}a+\frac{28\cdots 65}{12\cdots 79}$, $\frac{57\cdots 72}{12\cdots 79}a^{19}-\frac{63\cdots 68}{12\cdots 79}a^{18}+\frac{28\cdots 78}{12\cdots 79}a^{17}-\frac{22\cdots 41}{12\cdots 79}a^{16}+\frac{37\cdots 10}{12\cdots 79}a^{15}-\frac{23\cdots 15}{12\cdots 79}a^{14}+\frac{21\cdots 36}{12\cdots 79}a^{13}-\frac{98\cdots 04}{12\cdots 79}a^{12}+\frac{21\cdots 80}{12\cdots 79}a^{11}-\frac{94\cdots 19}{12\cdots 79}a^{10}-\frac{85\cdots 94}{12\cdots 79}a^{9}+\frac{16\cdots 97}{12\cdots 79}a^{8}-\frac{75\cdots 17}{12\cdots 79}a^{7}-\frac{26\cdots 34}{12\cdots 79}a^{6}-\frac{11\cdots 49}{12\cdots 79}a^{5}+\frac{19\cdots 36}{12\cdots 79}a^{4}+\frac{27\cdots 89}{12\cdots 79}a^{3}-\frac{14\cdots 41}{12\cdots 79}a^{2}-\frac{10\cdots 88}{12\cdots 79}a+\frac{39\cdots 03}{12\cdots 79}$
|
| |
| Regulator: | \( 897877398.442 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{6}\cdot 897877398.442 \cdot 2}{2\cdot\sqrt{5001984585680627954608248429847552}}\cr\approx \mathstrut & 0.199970089268 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.S_5$ (as 20T674):
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for $C_2^9.S_5$ |
| Character table for $C_2^9.S_5$ |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.5.0.1}{5} }^{4}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.5.0.1}{5} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.4.0.1}{4} }^{5}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{7}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.2.10a5.2 | $x^{10} + 2 x^{8} + 2 x^{7} + 4 x^{5} + x^{4} + 2 x^{3} + 2 x^{2} + 4 x + 3$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $$[2, 2, 2, 2]^{10}$$ |
| 2.10.1.0a1.1 | $x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | |
|
\(61\)
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.2.1.0a1.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 61.1.4.3a1.1 | $x^{4} + 61$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(397\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |