Properties

Label 20.8.49641192728...0000.2
Degree $20$
Signature $[8, 6]$
Discriminant $2^{24}\cdot 5^{10}\cdot 13^{6}\cdot 29^{4}\cdot 31^{6}$
Root discriminant $60.92$
Ramified primes $2, 5, 13, 29, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1028

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-53861, -250111, -303400, -182320, -207507, -210482, -78822, -49590, -29686, 23316, 33414, 11768, -4470, -2506, 830, -14, -157, 43, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 2*x^18 + 43*x^17 - 157*x^16 - 14*x^15 + 830*x^14 - 2506*x^13 - 4470*x^12 + 11768*x^11 + 33414*x^10 + 23316*x^9 - 29686*x^8 - 49590*x^7 - 78822*x^6 - 210482*x^5 - 207507*x^4 - 182320*x^3 - 303400*x^2 - 250111*x - 53861)
 
gp: K = bnfinit(x^20 - 4*x^19 + 2*x^18 + 43*x^17 - 157*x^16 - 14*x^15 + 830*x^14 - 2506*x^13 - 4470*x^12 + 11768*x^11 + 33414*x^10 + 23316*x^9 - 29686*x^8 - 49590*x^7 - 78822*x^6 - 210482*x^5 - 207507*x^4 - 182320*x^3 - 303400*x^2 - 250111*x - 53861, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 2 x^{18} + 43 x^{17} - 157 x^{16} - 14 x^{15} + 830 x^{14} - 2506 x^{13} - 4470 x^{12} + 11768 x^{11} + 33414 x^{10} + 23316 x^{9} - 29686 x^{8} - 49590 x^{7} - 78822 x^{6} - 210482 x^{5} - 207507 x^{4} - 182320 x^{3} - 303400 x^{2} - 250111 x - 53861 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(496411927280973952950108160000000000=2^{24}\cdot 5^{10}\cdot 13^{6}\cdot 29^{4}\cdot 31^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 29, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{70851115666885081266271017694850560126947565266378494} a^{19} - \frac{1193187689795919412815620521300016972489976125939191}{35425557833442540633135508847425280063473782633189247} a^{18} + \frac{11071976112372824040278200193771630980369841163527513}{70851115666885081266271017694850560126947565266378494} a^{17} + \frac{14867568210367926340269033292587460705683471718256285}{70851115666885081266271017694850560126947565266378494} a^{16} + \frac{2569587473374121155500054505624519838118407882471073}{70851115666885081266271017694850560126947565266378494} a^{15} - \frac{9025635702492222123259998847842552644139240723567303}{70851115666885081266271017694850560126947565266378494} a^{14} - \frac{1039562796466505789113891297541502138771882341014532}{35425557833442540633135508847425280063473782633189247} a^{13} + \frac{9109055638269410545017180368857258664632901595612241}{70851115666885081266271017694850560126947565266378494} a^{12} - \frac{31146683638948697234578477669142041546502097200903105}{70851115666885081266271017694850560126947565266378494} a^{11} + \frac{205530184283831176311223233964825402786294013040763}{70851115666885081266271017694850560126947565266378494} a^{10} + \frac{6754414225622550413845948566391954399453384251019967}{70851115666885081266271017694850560126947565266378494} a^{9} - \frac{14513857273410724896142343443198788415744791814195486}{35425557833442540633135508847425280063473782633189247} a^{8} + \frac{7672007668687531434902780683913107970913232880026179}{70851115666885081266271017694850560126947565266378494} a^{7} - \frac{30270187725206852132231072787877919719236689561535147}{70851115666885081266271017694850560126947565266378494} a^{6} - \frac{17415942012331826694468743647055900426876640215516740}{35425557833442540633135508847425280063473782633189247} a^{5} + \frac{26125709872861159740914914938371768096508691238801519}{70851115666885081266271017694850560126947565266378494} a^{4} + \frac{4184952807463619043155743258016076277218074241438825}{35425557833442540633135508847425280063473782633189247} a^{3} + \frac{25225851513515833744170259647051918764436668790033765}{70851115666885081266271017694850560126947565266378494} a^{2} + \frac{619866000703648120415567104492500270244457102135393}{35425557833442540633135508847425280063473782633189247} a + \frac{7385920986619673075460728796212300789766453107813721}{70851115666885081266271017694850560126947565266378494}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 25434402590.1 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1028:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 228 conjugacy class representatives for t20n1028 are not computed
Character table for t20n1028 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.109268775200000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.10.0.1$x^{10} + x^{2} - 2 x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
31Data not computed