Normalized defining polynomial
\( x^{20} - 3 x^{19} - 10 x^{18} + 74 x^{17} - 185 x^{16} - 182 x^{15} + 1950 x^{14} - 5168 x^{13} + 4181 x^{12} + 18679 x^{11} - 30482 x^{10} + 6736 x^{9} - 145851 x^{8} + 846882 x^{7} - 1187858 x^{6} - 1565642 x^{5} + 5591073 x^{4} - 4295009 x^{3} - 3561028 x^{2} + 5884406 x - 2848669 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(496411927280973952950108160000000000=2^{24}\cdot 5^{10}\cdot 13^{6}\cdot 29^{4}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{4}{13} a^{15} - \frac{2}{13} a^{14} - \frac{1}{13} a^{13} + \frac{1}{13} a^{12} - \frac{2}{13} a^{11} + \frac{1}{13} a^{10} - \frac{5}{13} a^{9} + \frac{5}{13} a^{8} - \frac{2}{13} a^{7} + \frac{1}{13} a^{6} + \frac{6}{13} a^{5} + \frac{1}{13} a^{4} - \frac{4}{13} a^{3} + \frac{4}{13} a^{2} + \frac{4}{13} a - \frac{5}{13}$, $\frac{1}{13} a^{17} - \frac{5}{13} a^{15} - \frac{6}{13} a^{14} + \frac{5}{13} a^{13} - \frac{6}{13} a^{12} - \frac{4}{13} a^{11} + \frac{4}{13} a^{10} - \frac{1}{13} a^{9} + \frac{4}{13} a^{8} - \frac{4}{13} a^{7} + \frac{2}{13} a^{6} + \frac{3}{13} a^{5} + \frac{5}{13} a^{4} - \frac{6}{13} a^{3} + \frac{1}{13} a^{2} + \frac{5}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{18} + \frac{1}{13} a^{15} - \frac{5}{13} a^{14} + \frac{2}{13} a^{13} + \frac{1}{13} a^{12} - \frac{6}{13} a^{11} + \frac{4}{13} a^{10} + \frac{5}{13} a^{9} - \frac{5}{13} a^{8} + \frac{5}{13} a^{7} - \frac{5}{13} a^{6} - \frac{4}{13} a^{5} - \frac{1}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2} + \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{191479427222873960681950763998192611451474709575189524693575783} a^{19} + \frac{2919290353042582947243828523181291926286264236765723551257815}{191479427222873960681950763998192611451474709575189524693575783} a^{18} - \frac{33243328615518740965993863375847160433593752048439988142353}{11263495718992585922467691999893683026557335857364089687857399} a^{17} + \frac{3802407199216663461377936209077878040385917263147546331406241}{191479427222873960681950763998192611451474709575189524693575783} a^{16} + \frac{51947474106064610441708990632499581305110264139293443566051918}{191479427222873960681950763998192611451474709575189524693575783} a^{15} + \frac{60430089713274197848255562957515276944328541182650177177519370}{191479427222873960681950763998192611451474709575189524693575783} a^{14} + \frac{22473423771614222494012150981152937466401325327190196239997524}{191479427222873960681950763998192611451474709575189524693575783} a^{13} - \frac{850940837325281301730858279635910530252092867396895569348404}{14729186709451843129380827999860970111651900736553040361044291} a^{12} - \frac{85505377269567718043244600297445095180862287240400709128971302}{191479427222873960681950763998192611451474709575189524693575783} a^{11} + \frac{48446058606324467881821400677064002499951219869913373332189280}{191479427222873960681950763998192611451474709575189524693575783} a^{10} + \frac{220083070765430425761741832706968803516405249018126865460168}{191479427222873960681950763998192611451474709575189524693575783} a^{9} - \frac{15565548467440160836800297410359229885500124486616461175166}{866422747614814301728283999991821771273641219797237668296723} a^{8} - \frac{65453806113662954249439672353464402689307747837922097953787176}{191479427222873960681950763998192611451474709575189524693575783} a^{7} - \frac{24949693477801567914637459216086294464797430823637451467828244}{191479427222873960681950763998192611451474709575189524693575783} a^{6} - \frac{41400042104479807956583476084027209852679440617074231475099690}{191479427222873960681950763998192611451474709575189524693575783} a^{5} - \frac{80147775779830312386875750231625382921187121073726719010185184}{191479427222873960681950763998192611451474709575189524693575783} a^{4} + \frac{7190523423847805015068354012449343192493520631384989695220420}{191479427222873960681950763998192611451474709575189524693575783} a^{3} + \frac{4076059517185601647944365514256836781292317080784255459518116}{11263495718992585922467691999893683026557335857364089687857399} a^{2} - \frac{31604811864386038027538419759561465574560859513285316219211109}{191479427222873960681950763998192611451474709575189524693575783} a - \frac{29684595383980813287682681778861680742488064607944591522206281}{191479427222873960681950763998192611451474709575189524693575783}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18088319570.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.6.5.3 | $x^{6} - 74431$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |