Normalized defining polynomial
\( x^{20} - 4 x^{19} - 5 x^{18} + 26 x^{17} + 7 x^{16} + 86 x^{15} - 148 x^{14} - 1462 x^{13} + 1035 x^{12} + 7250 x^{11} - 1905 x^{10} - 20880 x^{9} - 2467 x^{8} + 39476 x^{7} + 18342 x^{6} - 45500 x^{5} - 42341 x^{4} + 7332 x^{3} + 19227 x^{2} + 5122 x - 299 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(489606458428108592552566464708608=2^{20}\cdot 13^{14}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{295} a^{18} - \frac{67}{295} a^{17} + \frac{113}{295} a^{16} - \frac{52}{295} a^{15} + \frac{139}{295} a^{14} - \frac{9}{59} a^{13} - \frac{10}{59} a^{12} - \frac{117}{295} a^{11} - \frac{24}{295} a^{10} - \frac{2}{295} a^{9} - \frac{67}{295} a^{8} + \frac{102}{295} a^{7} - \frac{82}{295} a^{6} - \frac{99}{295} a^{5} - \frac{11}{59} a^{4} + \frac{132}{295} a^{3} + \frac{73}{295} a^{2} + \frac{102}{295} a + \frac{22}{295}$, $\frac{1}{159383250388491768953775115018804205} a^{19} - \frac{249007551070075852345323357423711}{159383250388491768953775115018804205} a^{18} + \frac{30897927652791482775715625439774811}{159383250388491768953775115018804205} a^{17} + \frac{7886929648302204344151533834270846}{159383250388491768953775115018804205} a^{16} - \frac{10146637625336888791374513624578118}{159383250388491768953775115018804205} a^{15} + \frac{36765689245766334985618229116194614}{159383250388491768953775115018804205} a^{14} - \frac{3323336367177804540472428546695130}{31876650077698353790755023003760841} a^{13} + \frac{77236360251393399167210942076716893}{159383250388491768953775115018804205} a^{12} + \frac{75826228604062399463027345580008734}{159383250388491768953775115018804205} a^{11} + \frac{74340604463314728902343962752295579}{159383250388491768953775115018804205} a^{10} + \frac{8841986212782267162318389934291951}{159383250388491768953775115018804205} a^{9} + \frac{2317375613226385845658262039366058}{31876650077698353790755023003760841} a^{8} - \frac{2163616738449802935390141339263262}{31876650077698353790755023003760841} a^{7} - \frac{6599392486779421562437451673404351}{159383250388491768953775115018804205} a^{6} + \frac{76933573200830132445776155180037926}{159383250388491768953775115018804205} a^{5} - \frac{42083446120600533336490477403077393}{159383250388491768953775115018804205} a^{4} - \frac{9383509548100044127349344299681102}{31876650077698353790755023003760841} a^{3} - \frac{4556256725582101387953929202546884}{31876650077698353790755023003760841} a^{2} - \frac{59478303684536484601032016967898701}{159383250388491768953775115018804205} a - \frac{75483947941726175893370269917349968}{159383250388491768953775115018804205}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 918439849.453 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.5.2 | $x^{6} + 51$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |