Properties

Label 20.8.48691180202...0625.1
Degree $20$
Signature $[8, 6]$
Discriminant $5^{10}\cdot 13^{4}\cdot 347^{6}$
Root discriminant $21.60$
Ramified primes $5, 13, 347$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T368

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -10, -40, 16, 198, 42, -449, -271, 590, 441, -554, -291, 411, 106, -165, 2, 40, -7, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 7*x^18 + 40*x^17 + 2*x^16 - 165*x^15 + 106*x^14 + 411*x^13 - 291*x^12 - 554*x^11 + 441*x^10 + 590*x^9 - 271*x^8 - 449*x^7 + 42*x^6 + 198*x^5 + 16*x^4 - 40*x^3 - 10*x^2 + 4*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^19 - 7*x^18 + 40*x^17 + 2*x^16 - 165*x^15 + 106*x^14 + 411*x^13 - 291*x^12 - 554*x^11 + 441*x^10 + 590*x^9 - 271*x^8 - 449*x^7 + 42*x^6 + 198*x^5 + 16*x^4 - 40*x^3 - 10*x^2 + 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} - 7 x^{18} + 40 x^{17} + 2 x^{16} - 165 x^{15} + 106 x^{14} + 411 x^{13} - 291 x^{12} - 554 x^{11} + 441 x^{10} + 590 x^{9} - 271 x^{8} - 449 x^{7} + 42 x^{6} + 198 x^{5} + 16 x^{4} - 40 x^{3} - 10 x^{2} + 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(486911802025734669619140625=5^{10}\cdot 13^{4}\cdot 347^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 347$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{481} a^{18} - \frac{16}{37} a^{17} - \frac{160}{481} a^{16} + \frac{1}{13} a^{15} - \frac{96}{481} a^{14} - \frac{191}{481} a^{13} - \frac{231}{481} a^{12} - \frac{59}{481} a^{11} - \frac{76}{481} a^{10} - \frac{190}{481} a^{9} + \frac{51}{481} a^{8} + \frac{55}{481} a^{7} - \frac{67}{481} a^{6} + \frac{46}{481} a^{5} + \frac{181}{481} a^{4} + \frac{33}{481} a^{3} + \frac{158}{481} a^{2} + \frac{132}{481} a - \frac{204}{481}$, $\frac{1}{107246433712093} a^{19} - \frac{5210882210}{107246433712093} a^{18} + \frac{6738443323075}{107246433712093} a^{17} - \frac{30902664194673}{107246433712093} a^{16} + \frac{11485078209823}{107246433712093} a^{15} - \frac{18747850475267}{107246433712093} a^{14} + \frac{18138874938547}{107246433712093} a^{13} - \frac{35538365375991}{107246433712093} a^{12} + \frac{38368744208544}{107246433712093} a^{11} + \frac{15672151111282}{107246433712093} a^{10} - \frac{32430943723873}{107246433712093} a^{9} + \frac{30475325007963}{107246433712093} a^{8} + \frac{30768320634007}{107246433712093} a^{7} - \frac{35098658202105}{107246433712093} a^{6} - \frac{38249272142388}{107246433712093} a^{5} + \frac{42287599248552}{107246433712093} a^{4} + \frac{3335071131166}{107246433712093} a^{3} + \frac{40076322044}{123130233883} a^{2} - \frac{1782334287641}{107246433712093} a + \frac{48203356381098}{107246433712093}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 456139.078976 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T368:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n368 are not computed
Character table for t20n368 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.3.4511.1, 10.6.63591003125.1, 10.4.22066078084375.1, 10.4.7061144987.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
347Data not computed