Normalized defining polynomial
\( x^{20} - 8 x^{19} + 16 x^{18} + 18 x^{17} - 15 x^{16} - 894 x^{15} + 2023 x^{14} + 3986 x^{13} - 21206 x^{12} + 35441 x^{11} + 66354 x^{10} - 284097 x^{9} - 179280 x^{8} + 903183 x^{7} + 524753 x^{6} - 1454770 x^{5} - 841143 x^{4} + 919508 x^{3} + 507195 x^{2} + 25941 x + 839 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(474764677846779705681219512939453125=5^{15}\cdot 11^{5}\cdot 9931^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 9931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{431275358367514806366531326336705578858955221211335462047197} a^{19} - \frac{178384372394982725635641149157525945057733007635934920738044}{431275358367514806366531326336705578858955221211335462047197} a^{18} - \frac{131038779389931169497083480650330646843585813528226953425287}{431275358367514806366531326336705578858955221211335462047197} a^{17} + \frac{126275385231736456518416721065815886952539040959245052824924}{431275358367514806366531326336705578858955221211335462047197} a^{16} - \frac{80809273639085000786349806061232749515466424267352757116873}{431275358367514806366531326336705578858955221211335462047197} a^{15} + \frac{31508064195721068429060425671114550184585084489062642634577}{431275358367514806366531326336705578858955221211335462047197} a^{14} - \frac{131365715076502407474955057096432271914429345242855152643990}{431275358367514806366531326336705578858955221211335462047197} a^{13} + \frac{112075843863802833376535595924935141535897489926242099428185}{431275358367514806366531326336705578858955221211335462047197} a^{12} - \frac{48149442551646265950628898961347320196705069663589029906020}{431275358367514806366531326336705578858955221211335462047197} a^{11} + \frac{78112315534967038168103414147952073997467291474847023597976}{431275358367514806366531326336705578858955221211335462047197} a^{10} - \frac{66743901104556032162239520504512232432459544122814512529432}{431275358367514806366531326336705578858955221211335462047197} a^{9} + \frac{5752955289229665066339699529874646209815918007128837589297}{431275358367514806366531326336705578858955221211335462047197} a^{8} - \frac{92986104503116579571932576113941306399479858301802707007294}{431275358367514806366531326336705578858955221211335462047197} a^{7} - \frac{211746272622697327284565661913167688857589819820763873301824}{431275358367514806366531326336705578858955221211335462047197} a^{6} + \frac{1923209791313968760020745000054767356261199383863387315436}{431275358367514806366531326336705578858955221211335462047197} a^{5} + \frac{29131936922168723979372562135673559011658615858543990501847}{431275358367514806366531326336705578858955221211335462047197} a^{4} + \frac{74720094416466619960530089538657658732967644293519228129993}{431275358367514806366531326336705578858955221211335462047197} a^{3} + \frac{107120202443505312731077452454813473667193393255649932941209}{431275358367514806366531326336705578858955221211335462047197} a^{2} + \frac{105759004520816609252591978652938502581078439215880811434224}{431275358367514806366531326336705578858955221211335462047197} a - \frac{181804708157758677430223530190104604054244450323998625320766}{431275358367514806366531326336705578858955221211335462047197}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25521704722.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.932312193828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 9931 | Data not computed | ||||||