Normalized defining polynomial
\( x^{20} - 8 x^{19} + 29 x^{18} - 84 x^{17} + 251 x^{16} - 652 x^{15} + 1403 x^{14} - 2726 x^{13} + 4823 x^{12} - 7568 x^{11} + 10330 x^{10} - 11352 x^{9} + 8897 x^{8} - 3350 x^{7} - 2555 x^{6} + 4392 x^{5} - 2713 x^{4} + 952 x^{3} + 604 x^{2} - 158 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46179397182603358960092184576=2^{20}\cdot 11^{18}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{2}{11} a^{14} - \frac{2}{11} a^{13} - \frac{5}{11} a^{12} - \frac{2}{11} a^{11} - \frac{1}{11} a^{10} - \frac{1}{11} a^{9} - \frac{1}{11} a^{8} - \frac{1}{11} a^{7} - \frac{1}{11} a^{6} - \frac{1}{11} a^{5} - \frac{2}{11} a^{4} - \frac{3}{11} a^{3} + \frac{1}{11} a^{2} + \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{3}{11} a^{12} + \frac{3}{11} a^{11} + \frac{1}{11} a^{10} + \frac{1}{11} a^{9} + \frac{1}{11} a^{8} + \frac{1}{11} a^{7} + \frac{1}{11} a^{6} + \frac{1}{11} a^{4} - \frac{4}{11} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{17} - \frac{4}{11} a^{13} - \frac{5}{11} a^{12} - \frac{5}{11} a^{10} - \frac{5}{11} a^{9} - \frac{5}{11} a^{8} - \frac{5}{11} a^{7} + \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{5}{11} a^{4} - \frac{5}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11}$, $\frac{1}{11} a^{18} - \frac{4}{11} a^{14} - \frac{5}{11} a^{13} - \frac{5}{11} a^{11} - \frac{5}{11} a^{10} - \frac{5}{11} a^{9} - \frac{5}{11} a^{8} + \frac{5}{11} a^{7} - \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{5}{11} a^{4} - \frac{1}{11} a^{3} - \frac{5}{11} a$, $\frac{1}{92577783077169057244392937} a^{19} + \frac{3084196827872139562178054}{92577783077169057244392937} a^{18} - \frac{820294157591080915399963}{92577783077169057244392937} a^{17} + \frac{1540494529700229484193103}{92577783077169057244392937} a^{16} - \frac{442856056006839851404140}{92577783077169057244392937} a^{15} + \frac{6435544536441644986103657}{92577783077169057244392937} a^{14} - \frac{26080032802091892938686825}{92577783077169057244392937} a^{13} - \frac{19330454493719528773396284}{92577783077169057244392937} a^{12} - \frac{18815503090783844329282322}{92577783077169057244392937} a^{11} + \frac{29178475866790997216234757}{92577783077169057244392937} a^{10} - \frac{4042910055908032499357626}{92577783077169057244392937} a^{9} - \frac{11696986922650753781380530}{92577783077169057244392937} a^{8} + \frac{4292033059823087858001872}{92577783077169057244392937} a^{7} + \frac{34151553782171669983272970}{92577783077169057244392937} a^{6} + \frac{40720949463077447589637203}{92577783077169057244392937} a^{5} - \frac{11265719780432720812271376}{92577783077169057244392937} a^{4} + \frac{748143488957798377605930}{8416162097924459749490267} a^{3} - \frac{35714297954588535395208475}{92577783077169057244392937} a^{2} + \frac{9063950284263843574705604}{92577783077169057244392937} a + \frac{856546980772614252901072}{2152971699469047842892859}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5522109.21263 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||