Normalized defining polynomial
\( x^{20} - 9 x^{19} + 25 x^{18} + 31 x^{17} - 407 x^{16} + 1186 x^{15} - 1145 x^{14} - 2608 x^{13} + 10648 x^{12} - 15324 x^{11} + 5219 x^{10} + 18865 x^{9} - 39562 x^{8} + 41696 x^{7} - 28185 x^{6} + 12502 x^{5} - 3251 x^{4} + 263 x^{3} + 66 x^{2} - 6 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46045894455076759556429185024=2^{20}\cdot 33769^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{18} + \frac{5}{26} a^{16} + \frac{11}{26} a^{15} + \frac{4}{13} a^{14} - \frac{1}{13} a^{13} + \frac{3}{26} a^{12} - \frac{3}{13} a^{11} - \frac{9}{26} a^{10} - \frac{5}{13} a^{9} - \frac{4}{13} a^{8} + \frac{1}{26} a^{6} + \frac{1}{26} a^{5} + \frac{1}{26} a^{4} + \frac{11}{26} a^{3} - \frac{1}{2} a^{2} - \frac{9}{26} a + \frac{11}{26}$, $\frac{1}{9267281297690873605226} a^{19} - \frac{6942888567194132018}{4633640648845436802613} a^{18} + \frac{509183132291357935979}{4633640648845436802613} a^{17} + \frac{838616038280641157009}{9267281297690873605226} a^{16} + \frac{22327385762916132366}{356433896065033600201} a^{15} + \frac{455613273250177097018}{4633640648845436802613} a^{14} - \frac{2067501262351766382631}{4633640648845436802613} a^{13} - \frac{1067971182416529613541}{9267281297690873605226} a^{12} - \frac{540569498096474790252}{4633640648845436802613} a^{11} - \frac{4438264674608423971189}{9267281297690873605226} a^{10} - \frac{65479428217893986825}{9267281297690873605226} a^{9} + \frac{3748388551157776705407}{9267281297690873605226} a^{8} - \frac{189762518557747144307}{9267281297690873605226} a^{7} - \frac{629278641767442512330}{4633640648845436802613} a^{6} + \frac{1667460811807007872075}{9267281297690873605226} a^{5} + \frac{1423235927426123218175}{4633640648845436802613} a^{4} - \frac{2058597753610052275547}{4633640648845436802613} a^{3} + \frac{2768045834520227631387}{9267281297690873605226} a^{2} - \frac{2094138177854152382868}{4633640648845436802613} a - \frac{1696045942081507675173}{9267281297690873605226}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6307278.88141 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.135076.1, 10.6.291928412416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 33769 | Data not computed | ||||||