Properties

Label 20.8.45918968345...5625.1
Degree $20$
Signature $[8, 6]$
Discriminant $3^{4}\cdot 5^{14}\cdot 23^{6}\cdot 89^{4}$
Root discriminant $24.16$
Ramified primes $3, 5, 23, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T794

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 25, -64, -124, 353, -16, -601, 503, -46, -201, 269, -320, 168, -42, 39, -48, 32, -6, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 6*x^18 + 32*x^17 - 48*x^16 + 39*x^15 - 42*x^14 + 168*x^13 - 320*x^12 + 269*x^11 - 201*x^10 - 46*x^9 + 503*x^8 - 601*x^7 - 16*x^6 + 353*x^5 - 124*x^4 - 64*x^3 + 25*x^2 + 3*x - 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - 6*x^18 + 32*x^17 - 48*x^16 + 39*x^15 - 42*x^14 + 168*x^13 - 320*x^12 + 269*x^11 - 201*x^10 - 46*x^9 + 503*x^8 - 601*x^7 - 16*x^6 + 353*x^5 - 124*x^4 - 64*x^3 + 25*x^2 + 3*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - 6 x^{18} + 32 x^{17} - 48 x^{16} + 39 x^{15} - 42 x^{14} + 168 x^{13} - 320 x^{12} + 269 x^{11} - 201 x^{10} - 46 x^{9} + 503 x^{8} - 601 x^{7} - 16 x^{6} + 353 x^{5} - 124 x^{4} - 64 x^{3} + 25 x^{2} + 3 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4591896834517011529541015625=3^{4}\cdot 5^{14}\cdot 23^{6}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{723774112398746192617193} a^{19} - \frac{88546400910813736387771}{723774112398746192617193} a^{18} - \frac{321059792579959817625461}{723774112398746192617193} a^{17} + \frac{82546754605624489006879}{723774112398746192617193} a^{16} + \frac{357640444910937463074914}{723774112398746192617193} a^{15} - \frac{192209125124331314394507}{723774112398746192617193} a^{14} + \frac{342066556558254460064756}{723774112398746192617193} a^{13} - \frac{11485246646561041508877}{723774112398746192617193} a^{12} - \frac{325123875422842263414643}{723774112398746192617193} a^{11} + \frac{188954303101274923090010}{723774112398746192617193} a^{10} + \frac{284163758669831145010692}{723774112398746192617193} a^{9} - \frac{20417354128849908016831}{723774112398746192617193} a^{8} - \frac{165316313147863706270116}{723774112398746192617193} a^{7} + \frac{43990432918533181229089}{723774112398746192617193} a^{6} - \frac{262180935609527825125092}{723774112398746192617193} a^{5} + \frac{167029734930504739190083}{723774112398746192617193} a^{4} - \frac{360546259689036145341082}{723774112398746192617193} a^{3} + \frac{883808019204222168145}{10194001583080932290383} a^{2} + \frac{88430315362163462589147}{723774112398746192617193} a + \frac{316660654257619350312517}{723774112398746192617193}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1466616.71733 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T794:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 138 conjugacy class representatives for t20n794 are not computed
Character table for t20n794 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$
$23$23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.6.0.1$x^{6} - x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$
89.6.0.1$x^{6} - x + 6$$1$$6$$0$$C_6$$[\ ]^{6}$