Normalized defining polynomial
\( x^{20} - 4 x^{19} - 3 x^{18} - 4 x^{17} - 50 x^{16} + 68 x^{15} + 412 x^{14} + 980 x^{13} + 3744 x^{12} + 6397 x^{11} + 13632 x^{10} + 29987 x^{9} + 22346 x^{8} + 43229 x^{7} + 91210 x^{6} + 20653 x^{5} + 12935 x^{4} + 111707 x^{3} + 57603 x^{2} - 10493 x - 29 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(455343145550142575255157470703125=5^{15}\cdot 419^{4}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{15} + \frac{2}{5} a^{14} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{15} + \frac{2}{5} a^{12} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{4183327963786284332749686323820367550091456765955} a^{19} - \frac{207909065342765380147388197887536826222552298793}{4183327963786284332749686323820367550091456765955} a^{18} - \frac{174483817596332244001124367398697443131659118246}{4183327963786284332749686323820367550091456765955} a^{17} + \frac{167366939335193639129791786465978750201517963604}{4183327963786284332749686323820367550091456765955} a^{16} + \frac{115701473724027054136388755264341556414945048568}{836665592757256866549937264764073510018291353191} a^{15} - \frac{1917787451656147176309327638724574486457786691442}{4183327963786284332749686323820367550091456765955} a^{14} + \frac{1956460265832077138068294779574517625064040697458}{4183327963786284332749686323820367550091456765955} a^{13} - \frac{263988183412024815523401977645973646497262163549}{836665592757256866549937264764073510018291353191} a^{12} + \frac{1614714596661152692104116069563756845031296804499}{4183327963786284332749686323820367550091456765955} a^{11} + \frac{51167809265691225382413796544673536323615981527}{4183327963786284332749686323820367550091456765955} a^{10} + \frac{2075420364601455733892115458812166570398424166103}{4183327963786284332749686323820367550091456765955} a^{9} + \frac{226753676610078654754036790610543496639167466477}{4183327963786284332749686323820367550091456765955} a^{8} - \frac{619495935196541737956919069794328950220050056437}{4183327963786284332749686323820367550091456765955} a^{7} + \frac{1631297229113857038961233162597887083920652376704}{4183327963786284332749686323820367550091456765955} a^{6} - \frac{1676508500512295642286849600793455610382020856087}{4183327963786284332749686323820367550091456765955} a^{5} + \frac{1202841383720841442867979838280383862665132327457}{4183327963786284332749686323820367550091456765955} a^{4} - \frac{1512419120449616123333927819130023843688520919176}{4183327963786284332749686323820367550091456765955} a^{3} - \frac{1631300890431929099335931839261875162522649816476}{4183327963786284332749686323820367550091456765955} a^{2} + \frac{209426557225639511458313496778260726136769166643}{4183327963786284332749686323820367550091456765955} a - \frac{129260591329275894622723344359940232001760021431}{4183327963786284332749686323820367550091456765955}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 223065882.192 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||