Normalized defining polynomial
\( x^{20} - x^{19} + 2 x^{18} - 327 x^{16} + 281 x^{15} - 1971 x^{14} + 4102 x^{13} + 15220 x^{12} + 33873 x^{11} + 105428 x^{10} + 85897 x^{9} - 552589 x^{8} - 1305690 x^{7} - 3713896 x^{6} - 9627805 x^{5} + 977675 x^{4} - 16163815 x^{3} + 19666195 x^{2} + 5616100 x - 176155 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44181154111269498973595933380126953125=5^{16}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{65} a^{16} - \frac{32}{65} a^{15} + \frac{18}{65} a^{14} - \frac{2}{65} a^{13} - \frac{32}{65} a^{12} + \frac{9}{65} a^{11} - \frac{19}{65} a^{10} + \frac{2}{5} a^{9} + \frac{1}{65} a^{8} - \frac{29}{65} a^{7} - \frac{2}{5} a^{6} + \frac{1}{13} a^{4} + \frac{5}{13} a^{3} - \frac{6}{13} a^{2} + \frac{2}{13} a - \frac{6}{13}$, $\frac{1}{65} a^{17} - \frac{31}{65} a^{15} - \frac{11}{65} a^{14} - \frac{31}{65} a^{13} + \frac{5}{13} a^{12} + \frac{9}{65} a^{11} + \frac{3}{65} a^{10} - \frac{12}{65} a^{9} + \frac{3}{65} a^{8} + \frac{21}{65} a^{7} + \frac{1}{5} a^{6} + \frac{1}{13} a^{5} - \frac{2}{13} a^{4} - \frac{2}{13} a^{3} + \frac{5}{13} a^{2} + \frac{6}{13} a + \frac{3}{13}$, $\frac{1}{65} a^{18} - \frac{28}{65} a^{15} + \frac{7}{65} a^{14} + \frac{28}{65} a^{13} - \frac{8}{65} a^{12} + \frac{22}{65} a^{11} - \frac{16}{65} a^{10} + \frac{29}{65} a^{9} - \frac{1}{5} a^{8} + \frac{24}{65} a^{7} - \frac{21}{65} a^{6} - \frac{2}{13} a^{5} + \frac{3}{13} a^{4} + \frac{4}{13} a^{3} + \frac{2}{13} a^{2} - \frac{4}{13}$, $\frac{1}{17171898824021089119349478429120244151781716227520021598966573453525} a^{19} + \frac{2301841508060359279838677163010078180501702066305627331754435}{686875952960843564773979137164809766071268649100800863958662938141} a^{18} + \frac{96760381099869941814636353418196213579101080684162402299225704357}{17171898824021089119349478429120244151781716227520021598966573453525} a^{17} - \frac{8943417681190132220332065879962809438401156051441051660154855264}{2453128403431584159907068347017177735968816603931431656995224779075} a^{16} + \frac{59153569809590790927020647433389401412889790921694984359492245568}{202022339106130460227640922695532284138608426206117901164312628865} a^{15} - \frac{7769343879568307784246759907991170017754979810577863242790732321634}{17171898824021089119349478429120244151781716227520021598966573453525} a^{14} - \frac{159488271687370038337349343118804752269357009605761528573546270749}{686875952960843564773979137164809766071268649100800863958662938141} a^{13} + \frac{209697143876419158916597166930473317490048186724862507948054863941}{2453128403431584159907068347017177735968816603931431656995224779075} a^{12} - \frac{273042581889876619119550900491576430608330306062449874178470339086}{1320915294155468393796113725316941857829362786732309353766659496425} a^{11} - \frac{2975815303961419194986453047390608272181516889663466181254022073}{28860334158018637175377274670790326305515489458016843023473232695} a^{10} - \frac{6953213848835026939198247026181236207394004923094455997304672063247}{17171898824021089119349478429120244151781716227520021598966573453525} a^{9} - \frac{162152665338917600249114691681339285011068232255034752139744651109}{490625680686316831981413669403435547193763320786286331399044955815} a^{8} + \frac{5384758512563139581847545856701605053895811524512664437008930607696}{17171898824021089119349478429120244151781716227520021598966573453525} a^{7} + \frac{5426233511717120930954723443963302826048695003460932066542300980301}{17171898824021089119349478429120244151781716227520021598966573453525} a^{6} - \frac{805952636620405498391824600224051538940369723404669452452070760569}{3434379764804217823869895685824048830356343245504004319793314690705} a^{5} - \frac{290701526470541151701941922745302103911624188587879357447651063548}{686875952960843564773979137164809766071268649100800863958662938141} a^{4} - \frac{108376634086899102902648471323207957100106940958313647148041115539}{686875952960843564773979137164809766071268649100800863958662938141} a^{3} + \frac{1689532984027277489963733263233949183739530187362651460727407217307}{3434379764804217823869895685824048830356343245504004319793314690705} a^{2} + \frac{929457477602096539007004215912735068680285649108571005252008426826}{3434379764804217823869895685824048830356343245504004319793314690705} a - \frac{12097554687842929185261538739844136191872624541805967573834524969}{37740436975870525537031820723341195937981793906637410107618842755}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 235394886379 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 6029 | Data not computed | ||||||