Normalized defining polynomial
\( x^{20} - 3 x^{19} + 38 x^{17} - 125 x^{16} - 23 x^{15} + 433 x^{14} + 131 x^{13} + 713 x^{12} - 4375 x^{11} + 1309 x^{10} - 2816 x^{9} + 12814 x^{8} + 2828 x^{7} - 8384 x^{6} - 9152 x^{5} - 2440 x^{4} + 10096 x^{3} + 976 x^{2} - 2688 x + 288 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44145664201696349530694455706624=2^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{17} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{3}{16} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{10} + \frac{5}{16} a^{9} - \frac{3}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4187874892292427105741461237788298418672} a^{19} + \frac{688675466019134733512531515806488893}{73471489338463633434060723469970147696} a^{18} - \frac{33982677780593622085427079022175963}{4591968083653977089628795216873134231} a^{17} - \frac{2807092773546890346715752944016215377}{55103617003847725075545542602477610772} a^{16} + \frac{349485715656744009980612978895501091561}{4187874892292427105741461237788298418672} a^{15} - \frac{376590446740717260077089062345959799551}{4187874892292427105741461237788298418672} a^{14} + \frac{670521823462003444070406877316162600293}{4187874892292427105741461237788298418672} a^{13} + \frac{475031051478865341744960168802498135613}{4187874892292427105741461237788298418672} a^{12} - \frac{829008730042096504461392503198668215929}{4187874892292427105741461237788298418672} a^{11} + \frac{204346164513467092574326097142489192143}{4187874892292427105741461237788298418672} a^{10} + \frac{1271280899610354182700969587684730920839}{4187874892292427105741461237788298418672} a^{9} - \frac{31224963448561821166163743318676725123}{110207234007695450151091085204955221544} a^{8} - \frac{398871898453235378401263095137872766535}{1046968723073106776435365309447074604668} a^{7} + \frac{247932595544159120816124737419713774265}{2093937446146213552870730618894149209336} a^{6} - \frac{74115957576274759525534233431682370183}{523484361536553388217682654723537302334} a^{5} - \frac{11231720513046707110555766138133086659}{61586395474888633907962665261592623804} a^{4} + \frac{4558207356122599565900449412534950867}{27551808501923862537772771301238805386} a^{3} + \frac{49520892140501089769614085931561519556}{261742180768276694108841327361768651167} a^{2} + \frac{16036550993746082786179610527978704061}{261742180768276694108841327361768651167} a - \frac{36536879602765839759038384564916730940}{87247393589425564702947109120589550389}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 178050557.612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n350 are not computed |
| Character table for t20n350 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 401 | Data not computed | ||||||