Properties

Label 20.8.43401671403...8125.1
Degree $20$
Signature $[8, 6]$
Discriminant $3^{4}\cdot 5^{15}\cdot 23^{4}\cdot 89^{4}$
Root discriminant $19.14$
Ramified primes $3, 5, 23, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T369

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -6, 5, 1, -2, 12, -17, -1, 15, -11, 15, -1, -17, 12, -2, 1, 5, -6, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 6*x^18 + 5*x^17 + x^16 - 2*x^15 + 12*x^14 - 17*x^13 - x^12 + 15*x^11 - 11*x^10 + 15*x^9 - x^8 - 17*x^7 + 12*x^6 - 2*x^5 + x^4 + 5*x^3 - 6*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 6*x^18 + 5*x^17 + x^16 - 2*x^15 + 12*x^14 - 17*x^13 - x^12 + 15*x^11 - 11*x^10 + 15*x^9 - x^8 - 17*x^7 + 12*x^6 - 2*x^5 + x^4 + 5*x^3 - 6*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 6 x^{18} + 5 x^{17} + x^{16} - 2 x^{15} + 12 x^{14} - 17 x^{13} - x^{12} + 15 x^{11} - 11 x^{10} + 15 x^{9} - x^{8} - 17 x^{7} + 12 x^{6} - 2 x^{5} + x^{4} + 5 x^{3} - 6 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(43401671403752471923828125=3^{4}\cdot 5^{15}\cdot 23^{4}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{943} a^{18} - \frac{20}{943} a^{17} + \frac{353}{943} a^{16} + \frac{272}{943} a^{15} + \frac{10}{23} a^{14} - \frac{110}{943} a^{13} - \frac{304}{943} a^{12} - \frac{93}{943} a^{11} + \frac{91}{943} a^{10} + \frac{356}{943} a^{9} + \frac{91}{943} a^{8} - \frac{93}{943} a^{7} - \frac{304}{943} a^{6} - \frac{110}{943} a^{5} + \frac{10}{23} a^{4} + \frac{272}{943} a^{3} + \frac{353}{943} a^{2} - \frac{20}{943} a + \frac{1}{943}$, $\frac{1}{943} a^{19} - \frac{47}{943} a^{17} - \frac{212}{943} a^{16} + \frac{192}{943} a^{15} - \frac{397}{943} a^{14} + \frac{325}{943} a^{13} + \frac{428}{943} a^{12} + \frac{117}{943} a^{11} + \frac{290}{943} a^{10} - \frac{333}{943} a^{9} - \frac{159}{943} a^{8} - \frac{278}{943} a^{7} + \frac{411}{943} a^{6} + \frac{96}{943} a^{5} - \frac{15}{943} a^{4} + \frac{135}{943} a^{3} + \frac{439}{943} a^{2} - \frac{399}{943} a + \frac{20}{943}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 151888.096898 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T369:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n369 are not computed
Character table for t20n369 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.12.0.1$x^{12} - x^{4} - x^{3} - x^{2} + x - 1$$1$$12$$0$$C_{12}$$[\ ]^{12}$
5Data not computed
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.2.1.1$x^{2} - 89$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.1$x^{2} - 89$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.1$x^{2} - 89$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.1$x^{2} - 89$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$