Normalized defining polynomial
\( x^{20} - 2 x^{19} - 7 x^{18} - 43 x^{17} - 29 x^{16} - 648 x^{15} - 640 x^{14} + 22872 x^{13} + 23645 x^{12} + 102939 x^{11} - 257213 x^{10} - 1369808 x^{9} + 1210580 x^{8} - 4911960 x^{7} + 9713821 x^{6} + 30158869 x^{5} - 47374562 x^{4} - 2328854 x^{3} + 2610644 x^{2} - 41632095 x + 94715791 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4284323656481291490575776641845703125=5^{15}\cdot 97^{2}\cdot 419^{4}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{19} + \frac{1976976090175849095029954243060453705652365775132471375513558739340611716227371771988}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{18} - \frac{265250096692728398984985167451474947078173992561995726175901630688867113306946347275}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{17} - \frac{970439085227012415768625345754543965256344675321316297977012459092510253321628944392}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{16} - \frac{2288257768852113404925318548338601876714439545703644577958138644755398658067852510515}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{15} + \frac{882499177249471712811114933632364849519309034111971148214974336399826442597178009287}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{14} + \frac{1692864223719866114201202018423678506532193795268149603871297483402897822109863475210}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{13} - \frac{887907775066062169174185009258752711246818282589661975215281727219268150824269006742}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{12} + \frac{288637860002134726336814247840319314642029538271607878896126398666963189996809458556}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{11} - \frac{2755913155155992007281081893387236535059976099575374460963657400460650345740822113504}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{10} + \frac{599928911310311749753994466579388770276043818247477454184778871568042166091789813859}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{9} + \frac{78974198599633782484768540541658844172429971838275513752014246465417522597799993326}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{8} + \frac{2382759826311382176272638797837414711020324306285125638182207018967054579961464960614}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{7} + \frac{411870153387641367002763718177921151852385254565548779072664249088103530329249969409}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{6} - \frac{960460899124337710175297682062008957725528070695168097860336495213577531699605736621}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{5} + \frac{2404072978604085917925617917626638473210490450814376202664037892495528074763519740964}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{4} + \frac{2487464540053611692394151342956123519601873586104908419921196703019720373974985853672}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{3} - \frac{1017573431643372944271539032497793864409313237783264185472972985838038566359447595551}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a^{2} - \frac{2658303121195356743662532326875478353659489985846127881265953328245311240530955944194}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471} a + \frac{413306853588332665143236177095111218570527504211721436892784485247646140716478877680}{5529185545630690597491968386628758228428068351153578010548702484750433873484417879471}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23510348708.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||