Normalized defining polynomial
\( x^{20} - 8 x^{19} + 19 x^{18} + 62 x^{17} - 569 x^{16} + 2090 x^{15} - 5312 x^{14} + 9874 x^{13} - 11393 x^{12} + 302 x^{11} + 33235 x^{10} - 91450 x^{9} + 158821 x^{8} - 186836 x^{7} + 113292 x^{6} + 48668 x^{5} - 165385 x^{4} + 133676 x^{3} - 33935 x^{2} - 7014 x - 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(411539421581712055500800000000000=2^{24}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{17} - \frac{2}{5} a^{16} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{205436202852233138594930849228817719335366025} a^{19} + \frac{859264637704805817494448072534496088939459}{41087240570446627718986169845763543867073205} a^{18} - \frac{95324989432471736994111331927024148588155271}{205436202852233138594930849228817719335366025} a^{17} - \frac{15473582532888167160438769992623473605738176}{205436202852233138594930849228817719335366025} a^{16} + \frac{53834063191663923910009891605111137521490703}{205436202852233138594930849228817719335366025} a^{15} + \frac{83860250510205199502897290371738381419540024}{205436202852233138594930849228817719335366025} a^{14} - \frac{12273012647421981825009934093734946903323298}{41087240570446627718986169845763543867073205} a^{13} - \frac{34828901796483106141378721590478243195309346}{205436202852233138594930849228817719335366025} a^{12} + \frac{77403434789846385156302692557552212642993194}{205436202852233138594930849228817719335366025} a^{11} + \frac{70378530550885520936307604169980145520089534}{205436202852233138594930849228817719335366025} a^{10} + \frac{101436869268619823338840003119661589334039162}{205436202852233138594930849228817719335366025} a^{9} + \frac{22104835454476313119397024472258855912727986}{205436202852233138594930849228817719335366025} a^{8} - \frac{5057294524948728463118134671974783817849496}{205436202852233138594930849228817719335366025} a^{7} + \frac{36638522984768118023856529817230075947692326}{205436202852233138594930849228817719335366025} a^{6} + \frac{20035314426647392546880507454737207180499244}{41087240570446627718986169845763543867073205} a^{5} - \frac{26081945846363133072217250464497521858810622}{205436202852233138594930849228817719335366025} a^{4} - \frac{47392563502884903747615405011215272770290201}{205436202852233138594930849228817719335366025} a^{3} + \frac{62480200101765160974447746713921037279590348}{205436202852233138594930849228817719335366025} a^{2} + \frac{29628564232860069288469971228091191219934109}{205436202852233138594930849228817719335366025} a + \frac{236920260470320147390975370969792804044392}{2308271942159922905561020777851884486914225}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 663413486.471 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||