Normalized defining polynomial
\( x^{20} - 7 x^{19} - x^{18} + 89 x^{17} - 52 x^{16} - 519 x^{15} + 117 x^{14} + 1945 x^{13} + 1264 x^{12} - 6435 x^{11} + 1105 x^{10} - 3575 x^{9} - 9126 x^{8} + 64675 x^{7} - 79677 x^{6} + 96317 x^{5} + 1378 x^{4} - 245479 x^{3} + 41795 x^{2} + 165945 x - 6877 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397805247472838231448960252575744=2^{16}\cdot 13^{15}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{17} a^{17} + \frac{8}{17} a^{16} - \frac{7}{17} a^{15} + \frac{2}{17} a^{14} + \frac{7}{17} a^{13} + \frac{6}{17} a^{12} + \frac{7}{17} a^{10} - \frac{6}{17} a^{9} + \frac{5}{17} a^{8} + \frac{6}{17} a^{7} - \frac{3}{17} a^{6} - \frac{3}{17} a^{5} + \frac{2}{17} a^{4} + \frac{1}{17} a^{3} - \frac{5}{17} a^{2} - \frac{1}{17} a - \frac{7}{17}$, $\frac{1}{221} a^{18} + \frac{3}{221} a^{17} + \frac{4}{221} a^{16} + \frac{54}{221} a^{15} - \frac{54}{221} a^{14} + \frac{22}{221} a^{13} - \frac{81}{221} a^{12} - \frac{6}{17} a^{11} + \frac{6}{17} a^{10} + \frac{4}{17} a^{9} - \frac{8}{17} a^{8} + \frac{4}{17} a^{7} - \frac{3}{17} a^{6} - \frac{2}{17} a^{4} - \frac{6}{17} a^{3} - \frac{6}{17} a^{2} - \frac{8}{17} a + \frac{4}{17}$, $\frac{1}{62844185480094876391603512794706776535770747} a^{19} + \frac{26088420655862575457836239884783207851807}{62844185480094876391603512794706776535770747} a^{18} + \frac{105469471259406888457846945764823098585979}{8977740782870696627371930399243825219395821} a^{17} - \frac{450040600012683797656812522642709894055502}{3696716792946757434800206634982751560927691} a^{16} + \frac{11587935597653156007916107811394325710041331}{62844185480094876391603512794706776535770747} a^{15} + \frac{21138281348483854915243362017929479589733031}{62844185480094876391603512794706776535770747} a^{14} - \frac{9227385495222870419056707009900993321730257}{62844185480094876391603512794706776535770747} a^{13} + \frac{2214271748452984167014656082624063595842962}{62844185480094876391603512794706776535770747} a^{12} + \frac{584999189522723508121573746503945151072304}{4834168113853452030123347138054367425828519} a^{11} - \frac{84246383086438154255405118148673292303204}{690595444836207432874763876864909632261217} a^{10} + \frac{1321111204390384539781171436240673919077548}{4834168113853452030123347138054367425828519} a^{9} - \frac{646717133705789721653849465927800890428478}{4834168113853452030123347138054367425828519} a^{8} - \frac{1842556541823866124745436557223353676536029}{4834168113853452030123347138054367425828519} a^{7} + \frac{2170599473317667571795848237073645794994352}{4834168113853452030123347138054367425828519} a^{6} + \frac{868746034237657033515755720552449250527782}{4834168113853452030123347138054367425828519} a^{5} - \frac{1187613686455690187018782949078208036140410}{4834168113853452030123347138054367425828519} a^{4} - \frac{1380128079980855020163719805683415443670384}{4834168113853452030123347138054367425828519} a^{3} + \frac{88791539060209125792074144832631892084580}{210181222341454436092319440784972496775153} a^{2} + \frac{179534075090790458468623446958064046127699}{690595444836207432874763876864909632261217} a - \frac{2896956371864235283679713651641112736885}{210181222341454436092319440784972496775153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 790471653.551 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.12.11.3 | $x^{12} - 208$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.5.2 | $x^{6} + 51$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |