Normalized defining polynomial
\( x^{20} - 5 x^{19} + 6 x^{18} + 12 x^{17} - 49 x^{16} + 60 x^{15} + 29 x^{14} - 185 x^{13} + 158 x^{12} + 90 x^{11} - 125 x^{10} + 32 x^{9} - 157 x^{8} - 41 x^{7} + 245 x^{6} + 79 x^{5} - 125 x^{4} - 48 x^{3} - 3 x^{2} + 36 x - 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39479125871598264344535849=3^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13197} a^{18} - \frac{938}{13197} a^{17} + \frac{1}{4399} a^{16} + \frac{496}{4399} a^{15} - \frac{1936}{13197} a^{14} + \frac{1704}{4399} a^{13} + \frac{1757}{13197} a^{12} + \frac{3772}{13197} a^{11} + \frac{2087}{13197} a^{10} - \frac{582}{4399} a^{9} + \frac{4606}{13197} a^{8} + \frac{1136}{13197} a^{7} - \frac{6565}{13197} a^{6} + \frac{74}{159} a^{5} - \frac{3367}{13197} a^{4} + \frac{3592}{13197} a^{3} + \frac{1642}{13197} a^{2} - \frac{45}{4399} a - \frac{1893}{4399}$, $\frac{1}{1544649051898542651} a^{19} - \frac{6154880900239}{514883017299514217} a^{18} + \frac{45449717427347531}{1544649051898542651} a^{17} - \frac{167305921550507205}{514883017299514217} a^{16} + \frac{145189754157283358}{1544649051898542651} a^{15} - \frac{228783756776312192}{1544649051898542651} a^{14} + \frac{411377654311685081}{1544649051898542651} a^{13} + \frac{8162771304393104}{81297318520975929} a^{12} - \frac{149748244948577474}{1544649051898542651} a^{11} - \frac{190148531208805640}{1544649051898542651} a^{10} - \frac{605848008316206206}{1544649051898542651} a^{9} + \frac{246270438305628307}{1544649051898542651} a^{8} + \frac{1068539899477316}{514883017299514217} a^{7} - \frac{278782008932826379}{1544649051898542651} a^{6} - \frac{527390694825959042}{1544649051898542651} a^{5} + \frac{203487258979954109}{1544649051898542651} a^{4} + \frac{35411142495226938}{514883017299514217} a^{3} - \frac{302831796525397843}{1544649051898542651} a^{2} - \frac{42536920646155836}{514883017299514217} a + \frac{55125501074112150}{514883017299514217}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 159172.765399 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T85):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.4.698137963227.1, 10.8.698137963227.1, 10.6.2094413889681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||