Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} + 49 x^{17} - 433 x^{16} + 1090 x^{15} - 491 x^{14} - 2271 x^{13} + 1735 x^{12} + 7265 x^{11} - 13225 x^{10} - 3826 x^{9} + 19965 x^{8} + 3271 x^{7} - 3165 x^{6} - 7523 x^{5} + 33345 x^{4} - 25275 x^{3} - 47003 x^{2} - 13767 x - 549 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(393613485959461667208104449865557=97^{2}\cdot 397^{3}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{83} a^{18} - \frac{39}{83} a^{17} - \frac{4}{83} a^{16} - \frac{41}{83} a^{15} + \frac{35}{83} a^{14} + \frac{12}{83} a^{13} - \frac{41}{83} a^{12} - \frac{2}{83} a^{11} - \frac{22}{83} a^{10} + \frac{34}{83} a^{9} + \frac{21}{83} a^{8} - \frac{17}{83} a^{7} + \frac{36}{83} a^{6} + \frac{8}{83} a^{5} - \frac{4}{83} a^{4} + \frac{17}{83} a^{3} - \frac{23}{83} a^{2} - \frac{5}{83} a - \frac{26}{83}$, $\frac{1}{2103992195384518449878787372387540531240536375283} a^{19} + \frac{10912761841951022083608085275006015147008257579}{2103992195384518449878787372387540531240536375283} a^{18} + \frac{236475237959488285730544810132405668899833270258}{701330731794839483292929124129180177080178791761} a^{17} + \frac{519094345649627976218533888001476463402534114518}{2103992195384518449878787372387540531240536375283} a^{16} - \frac{975014278988930761791838994393534863903660523611}{2103992195384518449878787372387540531240536375283} a^{15} + \frac{791567622311818278686114773255657296198066612010}{2103992195384518449878787372387540531240536375283} a^{14} - \frac{821425079332723466508403410802591689677752056512}{2103992195384518449878787372387540531240536375283} a^{13} - \frac{19408058497282221187093474408195907368197406385}{701330731794839483292929124129180177080178791761} a^{12} + \frac{463702822804162779112179143198166744317142929092}{2103992195384518449878787372387540531240536375283} a^{11} + \frac{727958334382119089763206381882628349526676398}{2103992195384518449878787372387540531240536375283} a^{10} - \frac{87967133882455855945193540778161584485473779246}{2103992195384518449878787372387540531240536375283} a^{9} - \frac{382570959691368726477185074437127258183189413445}{2103992195384518449878787372387540531240536375283} a^{8} + \frac{74026911759893016457765645886041230100904832357}{701330731794839483292929124129180177080178791761} a^{7} + \frac{84702244967682794868851693235715678974719342692}{2103992195384518449878787372387540531240536375283} a^{6} + \frac{251158599798594101601887156332600794899338919981}{701330731794839483292929124129180177080178791761} a^{5} + \frac{127901145411013246014010954331851843386518490262}{2103992195384518449878787372387540531240536375283} a^{4} - \frac{207083296673649584317044682372489236657820288802}{701330731794839483292929124129180177080178791761} a^{3} - \frac{227658483525087321558640216917367656432172564603}{701330731794839483292929124129180177080178791761} a^{2} - \frac{1034395427735944967900953283358147410676443147975}{2103992195384518449878787372387540531240536375283} a + \frac{256465729231851491094380288079127526700362215350}{701330731794839483292929124129180177080178791761}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 704417833.751 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n845 are not computed |
| Character table for t20n845 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||