Normalized defining polynomial
\( x^{20} - 869 x^{16} - 11440 x^{14} + 6281 x^{12} + 710622 x^{10} + 1933338 x^{8} - 12218580 x^{6} - 43809865 x^{4} + 41697568 x^{2} + 115971361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(383555474642332503321230908091527069696=2^{40}\cdot 11^{18}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{121} a^{14} + \frac{5}{11} a^{8} - \frac{1}{11} a^{6} - \frac{1}{11} a^{4}$, $\frac{1}{121} a^{15} + \frac{5}{11} a^{9} - \frac{1}{11} a^{7} - \frac{1}{11} a^{5}$, $\frac{1}{121} a^{16} - \frac{1}{11} a^{8} - \frac{1}{11} a^{6}$, $\frac{1}{1331} a^{17} - \frac{2}{121} a^{13} + \frac{5}{121} a^{11} - \frac{34}{121} a^{9} - \frac{12}{121} a^{7} - \frac{5}{11} a^{5}$, $\frac{1}{173382532399078067264716306141} a^{18} + \frac{593097652732268300016386}{177101667414788628462427279} a^{16} - \frac{40455773454322871073334212}{15762048399916187933156027831} a^{14} + \frac{78880511920390144757475435}{15762048399916187933156027831} a^{12} + \frac{315047951850990478828754485}{15762048399916187933156027831} a^{10} - \frac{2202659467094562291426421383}{15762048399916187933156027831} a^{8} - \frac{632689440826429297505470380}{1432913490901471630286911621} a^{6} - \frac{88631942127563046918115138}{1432913490901471630286911621} a^{4} + \frac{58090935516452648475412376}{130264862809224693662446511} a^{2} + \frac{513311983140539525716032}{1463650143923872962499399}$, $\frac{1}{173382532399078067264716306141} a^{19} + \frac{669473604359459450182650}{1948118341562674913086700069} a^{17} - \frac{40455773454322871073334212}{15762048399916187933156027831} a^{15} - \frac{311914076507283936229864098}{15762048399916187933156027831} a^{13} + \frac{575577677469439866153647507}{15762048399916187933156027831} a^{11} - \frac{248686524956191886489723718}{15762048399916187933156027831} a^{9} - \frac{706870434247936976762741652}{15762048399916187933156027831} a^{7} - \frac{349161667746012434243008160}{1432913490901471630286911621} a^{5} + \frac{58090935516452648475412376}{130264862809224693662446511} a^{3} + \frac{513311983140539525716032}{1463650143923872962499399} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 245169286905 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n314 |
| Character table for t20n314 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.19535810978816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||