Normalized defining polynomial
\( x^{20} - 5 x^{19} + 4 x^{18} + 13 x^{17} - 37 x^{16} + 123 x^{15} - 316 x^{14} + 457 x^{13} - 574 x^{12} + 650 x^{11} - 260 x^{10} - 51 x^{9} + 44 x^{8} - 540 x^{7} - x^{6} + 172 x^{5} + 306 x^{4} + 452 x^{3} + 322 x^{2} + 48 x - 29 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3828204809593746045712890625=5^{10}\cdot 19^{6}\cdot 1699^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{25} a^{14} + \frac{2}{25} a^{13} - \frac{2}{25} a^{12} - \frac{1}{25} a^{11} - \frac{4}{25} a^{10} + \frac{12}{25} a^{9} + \frac{3}{25} a^{8} + \frac{6}{25} a^{7} - \frac{1}{25} a^{6} - \frac{1}{25} a^{5} + \frac{3}{25} a^{4} - \frac{12}{25} a^{3} - \frac{1}{5} a^{2} - \frac{6}{25} a - \frac{11}{25}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{13} - \frac{2}{25} a^{12} + \frac{3}{25} a^{11} - \frac{6}{25} a^{9} - \frac{2}{5} a^{8} + \frac{7}{25} a^{7} - \frac{4}{25} a^{6} - \frac{2}{5} a^{5} - \frac{3}{25} a^{4} - \frac{11}{25} a^{3} + \frac{9}{25} a^{2} + \frac{11}{25} a + \frac{12}{25}$, $\frac{1}{125} a^{16} - \frac{2}{125} a^{15} - \frac{1}{125} a^{14} + \frac{7}{125} a^{12} - \frac{31}{125} a^{11} - \frac{56}{125} a^{10} - \frac{48}{125} a^{9} + \frac{52}{125} a^{8} + \frac{57}{125} a^{7} - \frac{27}{125} a^{6} - \frac{8}{125} a^{5} + \frac{9}{25} a^{4} - \frac{44}{125} a^{3} - \frac{57}{125} a^{2} - \frac{2}{25} a + \frac{1}{125}$, $\frac{1}{125} a^{17} - \frac{2}{125} a^{14} + \frac{2}{125} a^{13} - \frac{2}{125} a^{12} + \frac{47}{125} a^{11} + \frac{8}{25} a^{10} - \frac{24}{125} a^{9} + \frac{36}{125} a^{8} + \frac{47}{125} a^{7} - \frac{7}{125} a^{6} - \frac{21}{125} a^{5} - \frac{44}{125} a^{4} - \frac{1}{5} a^{3} - \frac{4}{125} a^{2} - \frac{39}{125} a - \frac{38}{125}$, $\frac{1}{625} a^{18} - \frac{1}{625} a^{17} + \frac{1}{625} a^{16} - \frac{9}{625} a^{15} + \frac{3}{625} a^{14} - \frac{24}{625} a^{13} - \frac{59}{625} a^{12} + \frac{272}{625} a^{11} + \frac{56}{125} a^{10} + \frac{42}{625} a^{9} - \frac{262}{625} a^{8} - \frac{182}{625} a^{7} + \frac{54}{625} a^{6} - \frac{156}{625} a^{5} - \frac{296}{625} a^{4} + \frac{257}{625} a^{3} - \frac{237}{625} a^{2} + \frac{86}{625} a + \frac{4}{625}$, $\frac{1}{260332922744375} a^{19} + \frac{10592026748}{52066584548875} a^{18} + \frac{151358830326}{52066584548875} a^{17} + \frac{107824161812}{260332922744375} a^{16} + \frac{1388170243524}{260332922744375} a^{15} + \frac{634621606054}{260332922744375} a^{14} - \frac{14602133690103}{260332922744375} a^{13} - \frac{1137425990879}{20025609441875} a^{12} - \frac{63569785961008}{260332922744375} a^{11} + \frac{36009251475017}{260332922744375} a^{10} - \frac{18607229882647}{52066584548875} a^{9} - \frac{113939520050444}{260332922744375} a^{8} - \frac{74508206673483}{260332922744375} a^{7} - \frac{50468026722967}{260332922744375} a^{6} + \frac{645919573959}{2683844564375} a^{5} - \frac{5252408593034}{260332922744375} a^{4} - \frac{3789001598754}{52066584548875} a^{3} + \frac{69769733307454}{260332922744375} a^{2} - \frac{5125245474868}{10413316909775} a - \frac{101368187356491}{260332922744375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1791091.8411 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n760 are not computed |
| Character table for t20n760 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1699 | Data not computed | ||||||