Normalized defining polynomial
\( x^{20} - 8 x^{19} + 21 x^{18} - 47 x^{17} + 84 x^{16} + 271 x^{15} - 601 x^{14} + 687 x^{13} - 3054 x^{12} - 6047 x^{11} + 5281 x^{10} - 24 x^{9} + 10188 x^{8} + 43649 x^{7} + 3542 x^{6} - 43104 x^{5} - 17217 x^{4} + 5879 x^{3} + 2352 x^{2} - 179 x - 49 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36640532518883313131195831298828125=5^{17}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{14} - \frac{2}{25} a^{13} - \frac{1}{25} a^{12} + \frac{2}{25} a^{11} + \frac{1}{25} a^{10} - \frac{7}{25} a^{9} - \frac{1}{25} a^{8} - \frac{8}{25} a^{7} + \frac{6}{25} a^{6} + \frac{3}{25} a^{5} + \frac{11}{25} a^{4} + \frac{8}{25} a^{3} - \frac{11}{25} a^{2} - \frac{3}{25} a + \frac{1}{25}$, $\frac{1}{50} a^{15} - \frac{1}{10} a^{11} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{3}{10} a^{7} - \frac{2}{5} a^{6} + \frac{11}{25} a^{5} + \frac{1}{10} a^{4} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a + \frac{17}{50}$, $\frac{1}{50} a^{16} - \frac{1}{10} a^{12} + \frac{1}{10} a^{8} - \frac{9}{25} a^{6} - \frac{1}{2} a^{5} + \frac{3}{10} a^{4} - \frac{3}{10} a^{3} + \frac{2}{5} a^{2} + \frac{7}{50} a - \frac{1}{5}$, $\frac{1}{50} a^{17} - \frac{1}{10} a^{13} + \frac{1}{10} a^{9} - \frac{9}{25} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} + \frac{7}{50} a^{2} - \frac{1}{5} a$, $\frac{1}{50} a^{18} - \frac{1}{50} a^{14} + \frac{1}{25} a^{13} - \frac{2}{25} a^{12} - \frac{1}{25} a^{11} - \frac{1}{50} a^{10} + \frac{1}{25} a^{9} - \frac{11}{25} a^{8} + \frac{13}{50} a^{7} - \frac{11}{50} a^{6} + \frac{17}{50} a^{5} - \frac{8}{25} a^{4} - \frac{21}{50} a^{3} - \frac{12}{25} a^{2} - \frac{1}{25} a - \frac{3}{25}$, $\frac{1}{133626770998962770757622026280150} a^{19} + \frac{126069131503402342288382324757}{26725354199792554151524405256030} a^{18} + \frac{410469063968806274557600563627}{133626770998962770757622026280150} a^{17} + \frac{66944941941109234551078860749}{13362677099896277075762202628015} a^{16} + \frac{313403784284194862480379623258}{66813385499481385378811013140075} a^{15} + \frac{615016901634257295237956242341}{133626770998962770757622026280150} a^{14} - \frac{9922615579673146835397613076657}{133626770998962770757622026280150} a^{13} + \frac{1325406415893552486298875940907}{66813385499481385378811013140075} a^{12} + \frac{4413157422459980178983930996511}{66813385499481385378811013140075} a^{11} + \frac{5618897075082106558310660857531}{133626770998962770757622026280150} a^{10} + \frac{10696287920269622979940088662231}{26725354199792554151524405256030} a^{9} - \frac{59186511850643944448456852315671}{133626770998962770757622026280150} a^{8} - \frac{59298821915889506281955550390569}{133626770998962770757622026280150} a^{7} + \frac{62682407388957367136098390627611}{133626770998962770757622026280150} a^{6} - \frac{5643659744856692513215190289146}{13362677099896277075762202628015} a^{5} + \frac{2667859153242234766847632471943}{133626770998962770757622026280150} a^{4} - \frac{26739472056939123161617321787996}{66813385499481385378811013140075} a^{3} - \frac{31769329815861709651109590799166}{66813385499481385378811013140075} a^{2} + \frac{20607321797211054453319054800721}{66813385499481385378811013140075} a + \frac{56704849690177538152899426956053}{133626770998962770757622026280150}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3432590086.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.6.17120872061640625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||