Normalized defining polynomial
\( x^{20} - 3 x^{19} - 5 x^{18} + 9 x^{17} - 50 x^{16} + 340 x^{15} - 703 x^{14} + 1576 x^{13} - 2553 x^{12} + 2799 x^{11} - 5928 x^{10} + 7494 x^{9} - 12004 x^{8} + 34606 x^{7} - 43465 x^{6} + 28777 x^{5} - 36533 x^{4} + 48816 x^{3} - 30355 x^{2} + 7721 x - 539 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36398622315033148150802886962890625=5^{15}\cdot 19^{4}\cdot 29^{6}\cdot 109^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{15} - \frac{1}{7} a^{14} + \frac{3}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{4} - \frac{1}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{17} + \frac{2}{7} a^{15} + \frac{2}{7} a^{14} + \frac{3}{7} a^{12} - \frac{1}{7} a^{11} - \frac{2}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{147} a^{18} + \frac{5}{147} a^{17} - \frac{3}{49} a^{16} - \frac{73}{147} a^{15} - \frac{10}{21} a^{14} + \frac{73}{147} a^{13} - \frac{1}{7} a^{12} - \frac{40}{147} a^{11} + \frac{4}{147} a^{10} + \frac{34}{147} a^{9} + \frac{9}{49} a^{8} - \frac{2}{147} a^{7} - \frac{41}{147} a^{6} + \frac{52}{147} a^{5} - \frac{64}{147} a^{4} + \frac{1}{7} a^{3} + \frac{3}{49} a^{2} - \frac{1}{7} a - \frac{1}{3}$, $\frac{1}{5562044819390785013051754702074243433} a^{19} - \frac{181005640568638262001926260800910}{5562044819390785013051754702074243433} a^{18} + \frac{38046243075102198358979888077518137}{1854014939796928337683918234024747811} a^{17} - \frac{672244504051558949281797153072997}{5562044819390785013051754702074243433} a^{16} - \frac{1698076127702804603904165503025261733}{5562044819390785013051754702074243433} a^{15} - \frac{1813555575321212443879186700068565837}{5562044819390785013051754702074243433} a^{14} + \frac{30183945964665844981163398917541184}{1854014939796928337683918234024747811} a^{13} - \frac{1074091366024807392352755027225206545}{5562044819390785013051754702074243433} a^{12} + \frac{1987668193205999633991095786740004242}{5562044819390785013051754702074243433} a^{11} - \frac{2774955935191596338869862208121245566}{5562044819390785013051754702074243433} a^{10} + \frac{20790530229966903521428444330104162}{109059702340995784569642249060279283} a^{9} + \frac{1619959932115794556017458938765031521}{5562044819390785013051754702074243433} a^{8} - \frac{1949608959841543022934333289356512063}{5562044819390785013051754702074243433} a^{7} + \frac{320450497484731064903031416327868145}{5562044819390785013051754702074243433} a^{6} - \frac{523934297567757238715874284456398555}{5562044819390785013051754702074243433} a^{5} + \frac{690748120471509244221809093856068182}{1854014939796928337683918234024747811} a^{4} + \frac{255521127154673022266449418762219718}{1854014939796928337683918234024747811} a^{3} + \frac{368240144394131317053611343538605491}{1854014939796928337683918234024747811} a^{2} - \frac{193808758199077760525832653282754703}{794577831341540716150250671724891919} a - \frac{14033902993611016248708482665001531}{37837039587692415054773841510709139}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9290301067.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8172298511640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 109 | Data not computed | ||||||