Properties

Label 20.8.35895074227...0000.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{20}\cdot 5^{10}\cdot 19^{5}\cdot 1699^{5}$
Root discriminant $59.94$
Ramified primes $2, 5, 19, 1699$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T756

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![32281, 0, 207914, 0, -110526, 0, -371422, 0, -70403, 0, 59909, 0, 5220, 0, -1741, 0, -153, 0, 11, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 11*x^18 - 153*x^16 - 1741*x^14 + 5220*x^12 + 59909*x^10 - 70403*x^8 - 371422*x^6 - 110526*x^4 + 207914*x^2 + 32281)
 
gp: K = bnfinit(x^20 + 11*x^18 - 153*x^16 - 1741*x^14 + 5220*x^12 + 59909*x^10 - 70403*x^8 - 371422*x^6 - 110526*x^4 + 207914*x^2 + 32281, 1)
 

Normalized defining polynomial

\( x^{20} + 11 x^{18} - 153 x^{16} - 1741 x^{14} + 5220 x^{12} + 59909 x^{10} - 70403 x^{8} - 371422 x^{6} - 110526 x^{4} + 207914 x^{2} + 32281 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(358950742275544609437706240000000000=2^{20}\cdot 5^{10}\cdot 19^{5}\cdot 1699^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.94$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 1699$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{14} + \frac{2}{11} a^{12} + \frac{5}{11} a^{10} + \frac{5}{11} a^{6} - \frac{1}{11} a^{4} - \frac{1}{11} a^{2} - \frac{1}{11}$, $\frac{1}{11} a^{17} - \frac{4}{11} a^{15} + \frac{2}{11} a^{13} + \frac{5}{11} a^{11} + \frac{5}{11} a^{7} - \frac{1}{11} a^{5} - \frac{1}{11} a^{3} - \frac{1}{11} a$, $\frac{1}{133847198525362370084571029} a^{18} - \frac{1773460806162928938896942}{133847198525362370084571029} a^{16} - \frac{38369135202326243545999489}{133847198525362370084571029} a^{14} - \frac{49674035504245279935607417}{133847198525362370084571029} a^{12} - \frac{58585159700168900887077133}{133847198525362370084571029} a^{10} + \frac{54677475146816595148838482}{133847198525362370084571029} a^{8} + \frac{56125860254223613801853794}{133847198525362370084571029} a^{6} + \frac{38852078347864638931359106}{133847198525362370084571029} a^{4} - \frac{17385049402635669145492841}{133847198525362370084571029} a^{2} - \frac{44624000280495131346109261}{133847198525362370084571029}$, $\frac{1}{133847198525362370084571029} a^{19} - \frac{1773460806162928938896942}{133847198525362370084571029} a^{17} - \frac{38369135202326243545999489}{133847198525362370084571029} a^{15} - \frac{49674035504245279935607417}{133847198525362370084571029} a^{13} - \frac{58585159700168900887077133}{133847198525362370084571029} a^{11} + \frac{54677475146816595148838482}{133847198525362370084571029} a^{9} + \frac{56125860254223613801853794}{133847198525362370084571029} a^{7} + \frac{38852078347864638931359106}{133847198525362370084571029} a^{5} - \frac{17385049402635669145492841}{133847198525362370084571029} a^{3} - \frac{44624000280495131346109261}{133847198525362370084571029} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 21186691117.3 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T756:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n756 are not computed
Character table for t20n756 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.3256446753125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
1699Data not computed